

AUXILIUM COLLEGE (Autonomous)

(Accredited by NAAC with A+ Grade with a CGPA of 3.55 out of 4 in the 3rd cycle) Gandhi Nagar, Vellore – 6.

DEPARTMENT OF CHEMISTRY LESSON PLAN 2019-2020

NAAC CYCLE IV SSR 2023

Dr.S.JHANCY MARY

LESSON PLAN

2019-2020

ODD SEMESTER

PHYSICAL CHEMISTRY

III B.Sc. -Chemistry - 5 hours /week

Week	Topics	Reference Books
1	Chemical Kinetics: order and molecularity - Methods to determine the rate of the reactions-derivation of rate constants of I, II, III and zero order reactions and examples.	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008. Jainudeen, Chemical Kinetics and Photochemistry, 1 st Edition, Jazeeme publication, 1982.
2	Derivation for time for half change with examples- Methods to determine the order of reactions – Experimental methods in the study of kinetics of reactions- Volumetry, Manometry.	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008. Jainudeen, Chemical Kinetics and Photochemistry, 1 st Edition, Jazeeme publication, 1982.
3	Polarimetry, Dilatometry and Colorimetry Effect of temperature on the rate of reactions – Arrhenius equation and concept of energy of activation.	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008. Jainudeen, Chemical Kinetics and Photochemistry, 1 st Edition, Jazeeme publication, 1982.
4	Collision theory and derivation of rate constant for bimolecular reactions –Lindemann 's theory of unimolecular reactions.	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008.

		Jainudeen, Chemical Kinetics and Photochemistry, 1 st Edition, Jazeeme publication, 1982.
5	Theory of Absolute Reaction Rates- thermodynamic derivation for the rate constant for a bimolecular reaction from it-Comparison of Collision theory and ARRT-significance of entropy and free energy of activation.	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008. Jainudeen, Chemical Kinetics and Photochemistry, 1 st Edition, Jazeeme publication, 1982.
6	Complex reactions : types - consecutive, parallel and reversible reactions (no derivation, only examples).	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008. Jainudeen, Chemical Kinetics and Photochemistry, 1 st Edition, Jazeeme publication, 1982.
7	Photochemistry-laws of light absorption and laws of photochemistry-Jablonski diagram- Fluorescence and Phosphorescence.	 R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43rd Edition, Vishal Publishing Co., 2008. Jainudeen, Chemical Kinetics and Photochemistry, 1st Edition, Jazeeme publication, 1982.
8	Primary and secondary reactions – quantum yield - Experimental determination, Eder's and Uranyl oxalate actinometers.	 R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43rd Edition, Vishal Publishing Co., 2008. Jainudeen, Chemical Kinetics and Photochemistry, 1st Edition, Jazeeme publication, 1982.

9	Kinetics of Hydrogen – Bromine reaction, photolysis of aldehyde-photosensitization- Chemiluminescence. Lasers- uses of lasers.	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008.
		Jainudeen, Chemical Kinetics and Photochemistry, 1 st Edition, Jazeeme publication, 1982.
10	Phase equilibria – Gibbs phase rule –statement, definition of terms and derivation - applications to one component systems – Water and Sulphur systems.	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008.
		Gurtu, Phase Rule, 2 nd Edition, Pragathi Prakash Publications, 1972.
11	Thermal analysis and cooling curves – reduced phase rule - Two component system – lead silver system - freezing mixtures - compound formation with congruent melting point.	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008.
		Gurtu, Phase Rule, 2 nd Edition, Pragathi Prakash Publications, 1972.
12	Zn-Mg system, Ferric Chloride water system - incongruent melting point, Na-K system, CST and effect of impurity on Phenol – Water system.	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008.
		Gurtu, Phase Rule, 2 nd Edition, Pragathi Prakash Publications, 1972.
13	Catalysis-definition-homogeneous catalysis- function of a catalyst in terms of Gibbs free energy of activation. Heterogenous catalysis- Mechanisms of surface reactions.	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008.
14	Simple decompositions on surfaces -Kinetics of unimolecular surface reactions. Enzyme catalysis- Derivation of Michaelis Menton equation.	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical

		Chemistry, 43 rd Edition, Vishal Publishing Co., 2008.
15	Adsorption - physisorption and chemisorption - Freundlich adsorption isotherm - Langmuir adsorption isotherm - BET equation (no derivation) - applications of adsorption.	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008.

I M.Sc. 1 hour/week

KINETICS AND PHOTO CHEMISTRY

S.No	Topics	Reference Books
1	Partition functions and activated complex-Eyring	Chemical Kinetics by Laidler
	equation	Kinetics
		Kinetics and Mechanisms of
		Chemical Transformations by
		J.Rajaram J.C. Kuriacose -
2	Derivation of rate constant	Chemical Kinetics by Laidler
		Kinetics
		Kinetics and Mechanisms of
		Chemical Transformations by
		J.Rajaram J.C. Kuriacose -
3	Determination of free energy, enthalpy and	Chemical Kinetics by Laidler
	entropy of activation and their significance	Kinetics
		Kinetics and Mechanisms of
		Chemical Transformations by
		J.Rajaram J.C. Kuriacose -
4	Potential energy surfaces	Chemical Kinetics by Laidler
		Kinetics
		Kinetics and Mechanisms of
		Chemical Transformations by
		J.Rajaram J.C. Kuriacose -
5	Potential energy surfaces	Chemical Kinetics by Laidler
		Kinetics
		Kinetics and Mechanisms of
		Chemical Transformations by
		J.Rajaram J.C. Kuriacose -
6	Applications of ACT to reactions in solution -	Chemical Kinetics by Laidler
	effect of pressure	Kinetics
		Kinetics and Mechanisms of
		Chemical Transformations by
		J.Rajaram J.C. Kuriacose -
7	Effect of dielectric constant -single sphere model	Chemical Kinetics by Laidler
		Kinetics
		Kinetics and Mechanisms of
		Chemical Transformations by
		J.Rajaram J.C. Kuriacose -
8	Effect of dielectric constant -double sphere model	Chemical Kinetics by Laidler

9	Effect of ionic strength on reactions in solution Cage effect	Kinetics Kinetics and Mechanisms of Chemical Transformations by J.Rajaram J.C. Kuriacose - Chemical Kinetics by Laidler Kinetics Kinetics and Mechanisms of Chemical Transformations by J.Rajaram J.C. Kuriacose - Chemical Kinetics by Laidler
		Kinetics Kinetics and Mechanisms of Chemical Transformations by J.Rajaram J.C. Kuriacose -
11	Kinetic isotope effect	Chemical Kinetics by Laidler Kinetics Kinetics and Mechanisms of Chemical Transformations by J.Rajaram J.C. Kuriacose -
12	Kinetic isotope effect	Chemical Kinetics by Laidler Kinetics Kinetics and Mechanisms of Chemical Transformations by J.Rajaram J.C. Kuriacose -
13	Linear free energy relationships– Hammett equation	Chemical Kinetics by Laidler Kinetics Kinetics and Mechanisms of Chemical Transformations by J.Rajaram J.C. Kuriacose -
14	Linear free energy relationships– Hammett equation	Chemical Kinetics by Laidler Kinetics Kinetics and Mechanisms of Chemical Transformations by J.Rajaram J.C. Kuriacose -
15	Linear free energy relationships– Taft equation	Chemical Kinetics by Laidler Kinetics Kinetics and Mechanisms of Chemical Transformations by J.Rajaram J.C. Kuriacose -

LESSON PLAN

2019-2020

EVEN SEMESTER

ELECTRO CHEMISTRY

III B.Sc.Chemistry - 5 hours /week

Week	Topics	Reference Books
1	Electrochemistry: Conductance - Metallic and electrolytic conductors - specific, equivalent and molar conductance.	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008.
		B.K Sharma, Electrochemistry, 4 th Edition, Goel Publishing House, 1990.
2	Measurement of conductance- variation of conductance with dilution for strong and weak electrolytes (qualitative explanation). Transport number and its determination by Hittorf's method.	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008.
		B.K Sharma, Electrochemistry, 4 th Edition, Goel Publishing House, 1990.
3	Ionic mobility - determination of ionic mobility – effect of temperature and concentration on ionic mobility, Ionic conductance - Kohlrausch's law and its applications.	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008.
		B.K Sharma, Electrochemistry, 4 th Edition, Goel Publishing House, 1990.
4	Theory of strong electrolytes - Debye – Huckel - Onsager theory-verification of Onsager equation.	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008.
		B.K Sharma, Electrochemistry, 4 th Edition, Goel Publishing House, 1990.

]
5	Wein effect and Debye Falkenhagen effect-ionic strength - activity and activity coefficients of strong electrolytes.	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008.
		B.K Sharma, Electrochemistry, 4 th Edition, Goel Publishing House, 1990.
6	Applications of conductivity measurements – degree of hydrolysis, solubility product and conductometric titrations.	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008.
		B.K Sharma, Electrochemistry, 4 th Edition, Goel Publishing House, 1990.
7	EMF: Galvanic cells-reversible and irreversible electrodes and cells - standard cell -emf and its measurement.	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008.
		B.K Sharma, Electrochemistry, 4 th Edition, Goel Publishing House, 1990.
8	Types of electrodes – electrode reactions- electrode potentials - reference electrodes-standard electrode potentials. Derivation of Nernst equation for electrode potential and cell emf - sign conventions	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008.
		B.K Sharma, Electrochemistry, 4 th Edition, Goel Publishing House, 1990.
9	Electrochemical series and its applications- formation of cells - electrode and cell reactions – cell emf	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008.

		B.K Sharma, Electrochemistry, 4 th Edition, Goel Publishing House, 1990.
10	Chemical cells and Concentration cells with and without transference – examples and derivation of expressions for their emf's.	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008.
		B.K Sharma, Electrochemistry, 4 th Edition, Goel Publishing House, 1990.
11	Liquid junction potential - Applications of emf measurements-calculation of ΔG , ΔH , ΔS and equilibrium constants.	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008.
		B.K Sharma, Electrochemistry, 4 th Edition, Goel Publishing House, 1990.
12	Determination of pH using hydrogen, quinhydrone and glass electrodes - Potentiometric titrations.	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008.
		B.K Sharma, Electrochemistry, 4 th Edition, Goel Publishing House, 1990.
13	Applications of Concentration cells - determination of valency of ions - transport number – ionic product of water.	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008.
		B.K Sharma, Electrochemistry, 4 th Edition, Goel Publishing House, 1990.
14	Solubility product– Polarization - decomposition potential - over voltage - storage cells -lead acid battery - mechanism of discharging and recharging	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008.

		B.K Sharma, Electrochemistry, 4 th Edition, Goel Publishing House, 1990.
15	Fuel cells – types of fuel cells – Hydrogen – Oxygen fuel cell.	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008.
		B.K Sharma, Electrochemistry, 4 th Edition, Goel Publishing House, 1990.

Lesson Plan for the year 2019- 2020

THERMODYNAMICS

1 hour/week

Dr.S.Jhancy Mary

Week	Portions to be covered	Reference
Week 1	Thermodynamics and Mathematical Probability	Statistical Thermodynamics by M.C. Gupta Thermodynamics by Rajaram Kuriacose
Week 2	Sterling approximation	Statistical Thermodynamics by M.C. Gupta Thermodynamics by Rajaram Kuriacose
Week 3	Lagrange's method of indeterminate multipliers	Statistical Thermodynamics by M.C. Gupta Thermodynamics by Rajaram Kuriacose
Week 4	Distribution and most probable distribution	Statistical Thermodynamics by M.C. Gupta Thermodynamics by Rajaram Kuriacose
Week 5	Distinguishable and Indistinguishable particles	Statistical Thermodynamics by M.C. Gupta Thermodynamics by Rajaram Kuriacose
Week 6	Statistical Mechanics-Maxwell- Boltzmann distribution law-Derivation and applications	Statistical Thermodynamics by M.C. Gupta Thermodynamics by Rajaram Kuriacose

Week 7		Statistical Thermodynamics by
	Bose–Einstein distribution law-	M.C. Gupta
WCCK /	derivation and applications	Thermodynamics by Rajaram
		Kuriacose
		Statistical Thermodynamics by
Week 8	Fermi –Dirac distribution law-	M.C. Gupta
	Derivation and applications	Thermodynamics by Rajaram
		Kuriacose
		Statistical Thermodynamics by
Weels 0	Comparison of the distribution laws	M.C. Gupta
Week 9	Comparison of the distribution laws	Thermodynamics by Rajaram
		Kuriacose

Week 10			Statistical Thermodynamics by
	Relation between partition thermodynamic functions	and	M.C. Gupta
	thermodynamic functions		Thermodynamics by Rajaram
			Kuriacose

Auxilium College (Autonomous), Vellore - 6 Odd Semester Lesson Plan 2019-2020 Dr. J. Rosaline Ezhilarasi

UCCHG16-Inorganic Chemistry, No. of hours per week - 4

Week	Unit	Portions to be Covered	References	
Ι	Ι	General characteristics of d block elements and comparative study of Ti and V group elements.	Inorganic Chemistry by P. L. Soni and Puri & Sharma.	
Π	Ι	Comparative study of Cr, Mn and Fe group elements.	Inorganic Chemistry by P. L. Soni and Puri & Sharma.	
III	Ι	Chemistry of lanthanides and actinides.	Modern Inorganic Chemistry by R. D. Madan.	
IV	Π	Metallurgy and metallurgical processes - general methods of extraction, various concentration, refining and reduction methods.	Modern Inorganic Chemistry by R. D. Madan.	
V	Π	Extraction, properties and uses of Ti, Zr, Pt and Th.	Modern Inorganic Chemistry by R. D. Madan and Advanced Inorganic Chemistry by Cotton and Wilkinson.	
VI	Π	Extraction, properties and uses of U. Preparation and uses of ammonium molybdate, vanadium pentoxide, uranium hexa fluoride. Steel alloys - heat treatment of steel.	Modern Inorganic Chemistry by R. D. Madan.	
VII	III	Fundamental particles of the nucleus - nucleon terminology, nuclides, isotopes, isobars, isotones, mirror nuclei and isomers.	Essentials of Nuclear Chemistry by H J Arnikar.	

VIII	III	Nuclear forces operating between the nucleons- meson exchange theory and nuclear fluid theory, N/P ratio, curves, stability belts, the whole number rule and packing fraction.	Essentials of Nuclear Chemistry by H J Arnikar and Elements of Nuclear Chemistry by A. K. Srivastava & P. C. Jain.	
IX	III	Natural radioactivity - properties of radioactive rays -radioactive series including neptunium series - group displacement law -rate of disintegration and half-life period.	Modern Inorganic Chemistry by R. D. Madan.	
Х	IV	Nuclear binding energy: Mass defect - simple calculations involving mass defect and B.E per nucleon - magic numbers - liquid drop model - shell model.	Modern Inorganic Chemistry by R. D. Madan, Essentials of Nuclear Chemistry by H J Arnikar and Elements of Nuclear Chemistry by A. K. Srivastava & P. C. Jain.	
XI	IV	Artificial radioactivity - induced radioactivity - nuclear transmutation reactions.	Modern Inorganic Chemistry by R. D. Madan.	
XII	IV	Nuclear fission - nuclear energy - nuclear reactors - breeder reactor, nuclear power projects in India, nuclear fusion – thermonuclear reactions – energy source of the sun. and the stars.	Modern Inorganic Chemistry by R. D. Madan, Essentials of Nuclear Chemistry by H J Arnikar.	
XIII	V	Biological importance of Fe, Zn, Mg and Co.	Fundamental Concepts of Applied Chemistry by Jayashree Ghosh and epgpathshala.	
XIV	V	Biological role of Mo, Na, K, Ca and P.	Fundamental Concepts of Applied Chemistry by Jayashree Ghosh and epgpathshala.	

XV	V	Inorganic medicinal chemistry - radio pharmaceuticals, chelate therapy and contrast	1
		agents in MRI.	by Jayashree Ghosh and epgpathshala.

Auxilium College (Autonomous), Vellore - 6

Odd Semester Lesson Plan

2019-2020

Dr. J. Rosaline Ezhilarasi

UCCHD16-General Chemistry III, No. of hours per week - 2

Week	Unit	Portions to be Covered	References
Ι	V	The Solid State - differences between	Principles of Physical
		crystalline and amorphous solids.	Chemistry by B. R. Puri, L.
			R Sharma and M.SPathania.
II	V	Symmetry in crystal systems - plane,	Principles of Physical
		axes and centre of symmetry, Elements of	Chemistry by B. R. Puri, L.
		symmetry.	R Sharma and M.SPathania.
III	V	Unit cell, space lattice, Bravais lattices,	Principles of Physical
		law of rational indices and Miller indices.	Chemistry by B. R. Puri, L.
			R Sharma and M.SPathania.
IV	V	X - ray diffraction - derivation of the	Principles of Physical
		Bragg's equation.	Chemistry by B. R. Puri, L.
			R Sharma and M.SPathania.
V	V	Experimental methods - Laue's method	Principles of Physical
		and powder method.	Chemistry by B. R. Puri, L.
			R Sharma and M.SPathania.
VI	V	Types of crystals -characteristics of	Principles of Physical
		molecular and covalent crystals.	Chemistry by B. R. Puri, L.

			R Sharma and M.SPathania.
VII	V	Characteristics of metallic and ionic crystals.	Principles of Physical Chemistry by B. R. Puri, L. R Sharma and M.SPathania.
VIII	V	Imperfections in crystal systems – Schottky and Frenkel defects, metal excess and metal deficiency defects.	PrinciplesofPhysicalChemistry by B. R. Puri, L.R Sharma and M.SPathania.
IX	V	Semiconductors – band theory of solids, intrinsic semiconductors, extrinsic semiconductors – n-type and p-type semiconductors.	Principles of Physical Chemistry by B. R. Puri, L. R Sharma and M.SPathania.
X	V	Three-dimensional close packing of spheres – ccp and hcp – characteristics of hcp, ccp and bcc structures,	PrinciplesofPhysicalChemistry by B. R. Puri, L.R Sharma and M.SPathania.
XI	V	Interstitial sites in closely packed arrangement of atoms – triangular, tetrahedral and octahedral sites, radius ratio rule and its effect on the shapes of ionic crystals.	Principles of Physical Chemistry by B. R. Puri, L. R Sharma and M.SPathania.
XII	V	Structures of ionic crystals-NaCl, CsCl, ZnS, Wurtzite, Fluorite and Rutile.	PrinciplesofPhysicalChemistry by B. R. Puri, L.R Sharma and M.SPathania.
XIII	III	Dicarboxylic acids – acid strengths, general methods of preparation and properties.	A Textbook of Organic Chemistry by Bahl and Arun Bahl.
XIV	III	Preparation and properties of oxalic and malonic acids.	A Textbook of Organic Chemistry by Bahl and

			Arun Bahl.
XV	III	Preparation and properties of succinic,	A Textbook of Organic
		glutaric and adipic acids.	Chemistry by Bahl and
			Arun Bahl.

Auxilium College (Autonomous), Vellore - 6

Odd Semester Lesson Plan

2019-2020

Dr. J. Rosaline Ezhilarasi

PCCHK15-Molecular Spectroscopy, No. of hours per week - 2

Week	Unit	Portions to be Covered	References
Ι	III	Mossbauer spectroscopy - Mossbauer	Physical Methods in
		effect, recoilless emission and absorption,	Inorganic Chemistry by
		Doppler effect.	R.S. Drago.
II	III	Instrumentation, hyperfine interaction -	Physical Methods in
		chemical isomer shift, quadruple	Inorganic Chemistry by
		interaction and magnetic splitting.	R.S. Drago.
III	III	Interpretation of spectra - bonding and	Physical Methods in
		structures of Fe^{2+} and Fe^{3+} compounds, Sn^{2+} and	Inorganic Chemistry by
		Sn ⁴⁺ compounds and detection of oxidation	R.S. Drago.
		states and in-equivalent MB atoms, Applications	
		of Mossbauer spectroscopy.	
IV	IV	ESR - principle, origin of an EPR signal,	Physical Methods in
		derivative spectra, g value - factors affecting the	Inorganic Chemistry by
		magnitude of g values, anisotropy.	R.S. Drago.
V	IV	Hyperfine interactions – hyperfine coupling	Physical Methods in
		constant, relative intensities of EPR signals,	Inorganic Chemistry by

T		hyperfine splitting in Cu and Mn compounds,	R.S. Drago.
			K.S. Diago.
		Interpretation of the spectra of simple carbon	
		centered free radicals, zero field splitting and	
		Kramer's degeneracy.	
VI	IV	Electron delocalization – Mc Connell's equation,	Physical Methods in
		line width in solid state EPR, Applications of	Inorganic Chemistry by
		EPR spectroscopy.	R.S. Drago.
VII	IV	Photoelectron spectroscopy – Photo electric	Physical Methods in
		effect, UV and X-ray PES, Koopmans' theorem,	Inorganic Chemistry by
		fine structure in PES, interpretation of photo	R.S. Drago.
		electron spectra of H_2 and N_2 .	
VIII	IV	Interpretation of photo electron spectra of O ₂ ,	Physical Methods in
		CO, NO, N ₂ O, H ₂ O, azide, HCl and NH ₃ .	Inorganic Chemistry by
			R.S. Drago.
IX	IV	Electron Spectroscopy for Chemical Analysis -	Physical Methods in
		applications of ESCA.	Inorganic Chemistry by
			R.S. Drago.
X	V	Rotational spectroscopy: Classification of	Fundamentals of
		molecules, rigid rotor model, selection rules,	Molecular
		intensity of spectral lines, effect of isotopic	Spectroscopy by C.N.
		substitution.	Banwell.
XI	V	Non rigid rotator, microwave spectra of	Fundamentals of
211	·	polyatomic molecules.	Molecular
			Spectroscopy by C.N.
			Banwell.
XII	V	Vibrational spectroscopy: Harmonic oscillator,	Banwell. Fundamentals of
XII	V	Vibrational spectroscopy: Harmonic oscillator, selection rules, vibrational energy of diatomic	

		bond strength; anharmonicity, Morse potential energy diagram.	Banwell.
XIII	V	Franck Condon principle, vibrational spectra of poly atomic molecules. Vibration-rotation spectroscopy, P, Q, R, branches.	
XIV	V	Breakdown of Born-Oppenheimer approximation, vibration of polyatomic molecules, normal modes of vibration, overtones, hot bands, Fermi resonance.	Molecular
XV	V	Raman: Classical and quantum theories of Raman effect, pure rotational, vibrational and vibrational-rotational Raman spectra, selection rules, stokes and anti-stokes lines, mutual exclusion principle.	Molecular Spectroscopy by C.N.

AUXILIUM COLLEGE (AUTONOMOUS) VELLORE - 6

PG & Research Department of Chemistry

Dr. (Mrs.) J. Rosaline Ezhilarasi

Even Semester (2019-2020) LESSON PLAN

Programme	B.Sc. Chemistry
Programme Code	U17
Semester	VI
Course	Coordination Chemistry
Course Code	UCCHJ16
Hours	4 hours/week
Credits	4
Total Hours	60 hours
Max Marks	100
Course Instructor/ Coordinator	Dr. (Mrs.) J. Rosaline Ezhilarasi

Week / Date	No. of Hours	Units	Topics	Teaching Methodology	Learning Resources	Method of Evaluation
1	4	Ι	Co-ordination compounds: Molecular compounds, difference between double salts and complex compounds, Definition of terms used, classification of ligands – based on denticity and charge. Chelation – tendency of polydentate ligands to form chelates and applications of chelate	Interactive Lecture method Inquiry based learning Expository learning method	Inorganic Chemistry by R.D.Madan Coordination Chemistry by Subash and Sathish	Class test

			formation.			
2	4	I	Nomenclature of coordination compounds.	Participatory Learning, Peer teaching	Coordination Chemistry by M. Satake Y. Mido.	Slip test
3	4	Ι	Isomerism in complexes: structural isomerism – conformation isomerism, ionization isomerism, hydrate isomerism, linkage isomerism, co-ordination isomerism, co-ordination position isomerism. polymerization isomerism, geometrical isomerism in 4- and 6- coordinate complexes.	Collaborative Learning Class room discussion	Coordination Chemistry by Gurdeep Chatwal and M. S. Yadav Inorganic Chemistry by R.D.Madan Concise Inorganic Chemistry by J. D. Lee A Text Book of Inorganic Chemistry by A. K. De	Audience Response System
4	4	Ι	Optical isomerism-optical activity, conditions, optical isomerism in 4- and 6- coordinated complexes.	Collaborative learning Inquiry based learning	Inorganic Chemistry by R.D.Madan	Slip test
5	4	Π	Theories of coordination compounds - Werner's theory – postulates, designation and formation of Co(III) ammine complexes, experimental verification.	Interactive Lecture method	Concise Coordination Chemistry by R Gopalan and V Ramalingam. Selected Topics in Inorganic	Take-home exam

					Chemistry,	
					Wahid U. Malik, G. D. Tuli and R. D. Madan.	
6	4	II	Sidgwick theory – electronic concept of coordinate bond, EAN rule, limitations.	Inquiry based learning Participatory learning	Inorganic Chemistry by R.D.Madan	Audience Response System
7	4	Π	Theory of bonding - valence bond theory – assumptions, VBT as applied to octahedral, (inner orbital and outer orbital) - hybridization, geometry and magnetic properties.	Inquiry based learning Collaborative learning	Inorganic Chemistry by R.D.Madan Concise Coordination Chemistry by R Gopalan and V Ramalingam.	Audience Response System Short answer test
8	4	II	VBT as applied to tetrahedral and square planar complexes - hybridization, geometry and magnetic properties, failures of VBT.	Inquiry based learning	Selected Topics in Inorganic Chemistry, Wahid U. Malik, G. D. Tuli and R. D. Madan.	Audience Response System
9	4	III	Crystal Field theory – salient features, splitting of d - orbitals in octahedral, tetrahedral and square planar complexes, crystal field stabilization energy – factors affecting the magnitude of Δ_0 – spectrochemical series.	Expository learning	Inorganic Chemistry by R.D.Madan, Concise Coordination Chemistry by R Gopalan and V Ramalingam, Selected	Home reading

				~	Topics in Inorganic Chemistry by Malik, Tuli and R. D. Madan.	
10	4	III	Filling up t_{2g} and e_g orbitals with electrons in octahedral and tetrahedral complexes - low spin and high spin complexes.	Collaborative learning Peer teaching	Inorganic Chemistry by R.D.Madan Concise Coordination Chemistry by R Gopalan and V Ramalingam.	Audience Response System
11	4	III	Calculation of CFSE in octahedral and tetrahedral complexes, uses of crystal field stabilization energy values.	Learning by teaching Group discussion	Inorganic Chemistry by R.D.Madan, P.L. Soni and Puri & Sharma	Audience Response System
12	4	III	Explanation of magnetic properties, colour and geometry using CFT, limitations of CFT, Comparison between VBT and CFT.	Experiential learning Role playing Simulation based learning	Selected Topics in Inorganic Chemistry, Wahid U. Malik, G. D. Tuli and R. D. Madan.	Home test
13	4	IV	Covalency in transition metal complexes - evidences for covalency. Molecular Orbital theory - postulates, metal orbitals and LGOs suitable for (- bonding in octahedral geometry.	Expository learning	Selected Topics in Inorganic Chemistry, Wahid U. Malik, G. D. Tuli and R. D. Madan.	Class test

14	A	TT 7			0.1. ()	01
14	4	IV	Construction of qualitative MO energy level diagrams for (–bonding in octahedral complexes. Metal orbitals and LGOs suitable for π -bonding in octahedral geometry, effect of π -bonding on the magnitude of Δ_0 .	Participatory Learning	Selected Topics in Inorganic Chemistry, Wahid U. Malik, G. D. Tuli and R. D. Madan. Advanced Inorganic Chemistry by J. D. Lee	Short answer test
15	4	IV	Construction of π MOs for donor and acceptor ligands, relation between pi bonding ability of ligands and spectrochemical series.	Participatory Learning	Selected Topics in Inorganic Chemistry, Wahid U. Malik, G. D. Tuli and R. D. Madan.	Audience Response System
16	4	IV	Comparison between CFT and MOT - similarities and differences.	Lecture method Inquiry based learning	Selected Topics in Inorganic Chemistry, Wahid U. Malik, G. D. Tuli and R. D. Madan.	Audience Response System
17	4	V	Pi acceptor ligands: metallic carbonyls – synergic effect, synthesis, properties and uses of carbonyls of Ni, Cr and Fe.	Interactive Lecture method Reading Assignments	Inorganic Chemistry by R.D.Madan, P.L. Soni and Puri & Sharma	Assignment
18	4	V	Carbonyls of Co, Mn, Mo and W – synthesis, properties and uses.	Personalized learning	Selected Topics in Inorganic	Assignment

_							
						Chemistry,	
						Wahid U.	
						Malik, G. D.	
						Tuli and R. D.	
						Madan.	
	19	4	V	Bonding, hybridization and	Interactive	Inorganic	Audience Response
				structures of carbonyls of	Learning	Chemistry by	System
				Ni, Cr, Fe.		R.D.Madan,	
						P.L. Soni and	
						Puri & Sharma	
	20	4	V	Bonding, hybridization and	Interactive	Inorganic	Audience Response
				structures of carbonyls of	Learning	Chemistry by	System
				Co, Mn, Mo and W.		R.D.Madan,	
						P.L. Soni and	
						Puri & Sharma	

Programme	B.Sc. Chemistry	
Programme Code	U17	
Semester	IV	
Course	General Chemistry - IV	
Course Code	UCCHE16	
Hours	5 hours/week	
Credits	5	
Total Hours	45/75 hours	
Max Marks	100	
Course Instructor/ Coordinator	Dr. (Mrs.) J. Rosaline Ezhilarasi	

Week	No of	Units	Topics	Teaching	Learning	Method of Eval
/ Date	Hours			Methodology	Resources	
1	3	IV	Thermodynamics - types of systems – isolated, closed, open, homogeneous and heterogeneous systems, phase, state of a system, state variables. Thermodynamic equilibrium - thermal, mechanical and chemical equilibria, extensive and intensive properties, processes and their types – isothermal, adiabatic and isobaric processes, reversible and irreversible processes, nature of work and heat.	Scientific method of teaching Reading Recitation Peer group teaching	Principles of Physical Chemistry by Puri & Sharma Textbook of Physical Chemistry by P.L. Soni	Audience Respons System Outside class test
2	3	IV	The first law of thermodynamics - concept of internal energy, statements of I law, state functions, exact and inexact differentials, the Euler reciprocal relation, enthalpy of a system, enthalpies of vaporization	Deductive/Analyt ic/Rule G method of teaching Problem solving method Collaborative learning	Textbook of Physical Chemistry by P.L. Soni Principles of Physical Chemistry by	Audience Respons System Home work

					Derat 0	C1:
			and fusion, heat capacity of a system - relationship between C_p and C_v in gaseous systems - calculation of w, ΔU , q and ΔH for expansion and compression of ideal gases under reversible and irreversible isothermal conditions.		Puri & Sharma	Slip test
3	3	IV	Adiabatic expansion – calculation of w, ΔU and ΔH , final temperatures in reversible and irreversible adiabatic expansions, Comparison of isothermal and adiabatic expansions, Zerothlaw of thermodynamics. Thermochemistry - heat of reaction, exothermic and endothermic reactions, relationship between q_p and q_v .	Heuristic method Mind mapping method Problem solving method Peer group teaching	Principles of Physical Chemistry by Puri & Sharma Textbook of Physical Chemistry by P.L. Soni	Audience Respons System Home work
4	3	IV	Standard enthalpy changes of reactions, standard enthalpies of combustion, neutralization and formation, determination of enthalpies of reactions, variation of enthalpy of reaction with temperature - Kirchhoff's equations. Bond energies-definition, calculation and applications of bond energies.	Group Discussion Open book assignments Cooperative Learning Peer group teaching Problem solving method	Principles of Physical Chemistry by Puri & Sharma Thermodyna mics by J. N. Gurtu	Audience Respons System Home test
5	3	IV	The Second law of thermodynamics - need for	Heuristic method	Thermodyna mics by J. N.	Audience Respons System

		1				
			the second law, statements of II law, spontaneous processes, Carnot's cycle - efficiency of a heat engine- Carnot's theorem (statement only).	Recitation Participatory learning	Gurtu	Home work
6	3	V	Entropy – the concept of entropy, entropy changes in isothermal expansion of an ideal gas, in reversible and irreversible processes, entropy change accompanying change of phase.	Lecture method Problem solving Recitation	Thermodyna mics by Rajaram & Kuriakose	Take-home test
7	3	V	Calculation of entropy changes with changes in T, V, and P, entropy changes in different processes, entropy of a mixture of ideal gases, entropy of mixing, physical significance of entropy.	Lecture method Open book reading Problem solving	Principles of Physical Chemistry by Puri & Sharma	Audience Respons System
8	3	V	Helmholtz and Gibbs free energy functions, variation of free energy change with T and P. Maxwell's relations, criteria for reversible and irreversible processes, Gibbs- Helmholtz equation.	Participatory learning Peer teaching	Thermodyna mics by J. N. Gurtu Principles of Physical Chemistry by Puri & Sharma	Short answer test Audience Respons System

				.		
9	3	V	Partial molar properties – concept of chemical potential, the Gibbs-Duhem equation, variation of chemical potential with temperature and pressure, chemical potential in a system of ideal gases, Clausius- Clapeyron equation – applications.	Interactive lecture method Group discussion	Thermodyna mics by J. N. Gurtu, Rajaram& Kuriakose Principles of Physical Chemistry by Puri & Sharma	Audience Respons System Take home exam
10	3	V	Third law of thermodynamics - Nernst heat theorem, statement of third law, determination of absolute entropies of solids, liquids and gases, residual entropy.	Reading Recitation Interactive lecture method	Principles of Physical Chemistry by Puri & Sharma	Audience Respons System
11	3	III	Aromaticity – Huckel's rule and its applications.	Lecture method Inquiry based learning	Advanced Organic Chemistry by Bahl & Arun Bahl	Assignment
12	3	III	Heterocyclic compounds - preparation, properties and uses of furan, thiophene, pyrrole.	•••	Textbook of Organic Chemistry by P.L.Soni and K.S. Tewari	Outside class test
13	3	III	Preparation, properties and uses of pyridine, quinoline and isoquinoline.	Interactive lecture Group discussion	Textbook of Organic Chemistry by P.L.Soni and K.S. Tewari	Outside class test

					-	-
14	3	III	Phenols - preparation,	Collaborative	Textbook of	Outside class test
			properties and uses of	learning	Organic	
			dihydric and trihydric		Chemistry by	Assignment
			phenols, acidic character of		P.L.Soni and	
			phenols.		K.S. Tewari	
15	3	III	Mechanism of Kolbe's	Expository	Textbook of	Audience Respons
			reaction, Riemer-Teimann	learning	Organic	System
			reaction, Gattermann		Chemistry by	
			reaction, Mannich and		P.L.Soni and	
			Houben –Hoesch reactions.		K.S. Tewari	Home test
					Modern	
					Organic	
					Chemistry by	
					M.K.Jain	

Programme	M.Sc. Chemistry
Programme Code	P14
Semester	II
Course	Advanced Coordination Chemistry
Course Code	PCCHE19
Hours	5 hours/week
Credits	4
Total Hours	30/75 hours
Max Marks	100
Course Instructor/	Dr. (Mrs.) J. Rosaline Ezhilarasi
Coordinator	

Week / Date	No of Hours	Units	Topics	Teaching Methodol ogy	Learning Resources	Method of Evaluation
1	2	II	CFT- salient features of CFT, crystal field splitting of d-orbitals in octahedral complexes – factors affecting the magnitude of Δ_0	Inductive teaching and learning	Concise Coordination Chemistry by R. Gopalan Selected Topics in Inorganic Chemistry by Malik Tuli Madan Inorganic Chemistry by R.D.Madan	Assignment Take-home test
2	2	Π	Crystal field splitting of d- orbitals in octahedral, tetrahedral, tetragonal and square planar complexes, consequences of splitting – high-spin and low-spin complexes, distribution of d-electrons.	Inquiry based learning Participato ry learning	Inorganic Chemistry by R.D.Madan Inorganic Chemistry by Puri & Sharma Advanced Inorganic Chemistry by Cotton & Wilkinson	Home work
3	2	II	CFSE- calculation of CFSE for various d systems in O_h and T_d fields.	Active and Collaborat ive learning Peer teaching	Coordination Chemistry by M. Satake Y. Mido and Gurdeep Chatwal and M. S. Yadav	Class test Self- evaluation

· · · · ·				T		
4	2	Π	Uses of CFSE values, applications of CFT, limitations.	Interactive lecture method	Concise Inorganic Chemistry by J. D. Lee	Class test Self-evaluation
					A Text Book of Inorganic Chemistry by A. K. De	
5	2	II	Jahn-Teller distortion – theorem, z-in and z-out cases.	Expository learning Peer teaching	Selected Topics in Inorganic Chemistry by Malik Tuli Madan	Audience Response Sys
6	2	П	Causes and consequences of Jahn-Teller distortion	Inquiry based learning	Concise Coordination Chemistry by R. Gopalan	Audience Response Sys
7	2	Π	MOT- experimental evidences for metal-ligand covalent bonding in complexes, σ and π - bonding in O _h complexes.	Interactive lecture method	Selected Topics in Inorganic Chemistry by Malik Tuli Madan	Constructed response qu Home test
8	2	II	Effects of π –bonding on the value of Δ_0 , comparison of CFT with MOT.	Inquiry based learning	Selected Topics in Inorganic Chemistry by Malik Tuli Madan	Assignment Home test
9	2	IV	Electron transfer reactions (redox reactions): Outer Sphere Mechanism- characteristics.	Interactive lecture method with role playing	Concise Coordination Chemistry by R. Gopalan	Audience Response Sys

10	2	IV	Factors influencing OSM, cross reactions – Marcus- Hush principle.	Participato ry learning	Concise Coordination Chemistry by R. Gopalan	Home work
11	2	IV	Characteristics of Inner Sphere Mechanism.	Interactive lecture method with role playing	Concise Coordination Chemistry by R. Gopalan	Audience Response Sys
12	2	IV	Factors influencing ISM, OSM versus ISM.	Collaborat ive learning	Concise Coordination Chemistry by R. Gopalan	Home work
13	2	IV	Two electron transfers, Non-complementary electron transfer reactions, Reactions of the coordinated ligands, geometrical and optical isomerization reactions, electron transfer reactions in biological systems – Cytochromes, Rubredoxins and Ferredoxins.	Interactive lecture method Self- learning	Concise Coordination Chemistry by R. Gopalan Coordination Chemistry by M. Satake Y. Mido and Gurdeep Chatwal and M. S. Yadav	Audience Response Sys Class test
14	2	IV	Ligand substitution reactions in square-planar complexes – mechanism	Lecture method	Selected Topics in Inorganic Chemistry by Malik Tuli Madan	Take-home exam
15	2	IV	Influence of entering, leaving and central metal ion on the reactivity of square planar complexes of Pt (II).	Interactive lecture cum Participato ry learning	Physical Methods in Inorganic Chemistry by Drago	Audience Response Sys Slip test

Kindly include as many rows as required

Learning Resources – all print, electronic and digital resources must be specified with (at least basic) details for students' reference.

Student Centric Methods	: Methods of instruction that focus on products of learning by the students (refer to the following)
Participative Learning	Participatory Learning and Action is a family of approaches, methods, attitudes, behaviours and relationships, which enable and empower people to share, analyze and enhance their knowledge of their life and conditions, and to plan, act, monitor, evaluate and reflect.
Experiential Learning	: Is a process of learning through experience and is more specifically defined as "learning through reflection on doing".
Problem Based Learning (PBL)	: Is a student-centred pedagogy in which students learn about a subject through the experience of solving an open-ended problem found in trigger material. The PBL process does not focus on problem solving with a defined solution, but it allows for the development of other desirable skills and attributes. This includes knowledge acquisition, enhanced group collaboration and communication.

AUXILIUM COLLEGE (AUTONOMOUS) VELLORE – 6.

LESSON PLAN 2019-2020

UCCHH16

Organic Chemistry

Week	No of Hours	Units	Content	Reference
Ι	4	Ι	Stereoisomerism: Optical isomerism - Projection formulae: Fischer, Flying wedge, Sawhorse and Newmann projection formulae- Cahn – Ingold – Prelog rules – R-S notations for optical isomers with one and two asymmetric carbon atoms.	Reactionandreagents-O.P.Agarwal-Organic-StereochemistryTewari-Organic Reaction-MechanismsTewari-
II	4	Ι	Optical activity in compounds not containing asymmetric carbon atoms – Biphenyls (atropisomerism), allenes and spiranes	Reactionandreagents-O.P.AgarwalOrganicStereochemistry-Tewari

III	4	I	Geometrical isomerism: Cis - trans, syn – anti and E-Z notations Geometrical	Organic Reaction Mechanisms – Tewari Reaction and
			isomerism in maleic and fumaric acids and unsymmetrical ketoximes – methods of distinguishing geometrical isomers using melting point, dipole moment, dehydration, cyclisation and heat of combustion and hydrogenation.	reagents – O.P.Agarwal Organic Stereochemistry- Tewari Organic Reaction Mechanisms – Tewari
IV	4	Π	Tautomerism: Definition- keto- enol tautomerism (identification, acid and base catalysed mechanisms, preparations and characteristics), nitro- acinitro tautomerism and amido-imido tautomerism.	Reactionandreagents-O.P.AgarwalOrganicStereochemistry-TewariOrganic ReactionMechanisms –Tewari
V	4	Π	Conformational analysis: Conformational analysis of ethane and n- butane	Reactionandreagents-O.P.Agarwal

			including energy diagrams – conformers of cyclohexane – axial and equatorial bonds – ring flipping showing axial equatorial inter conversions	Organic Stereochemistry- Tewari Organic Reaction Mechanisms – Tewari
VI	4	II	conformers of mono and di substituted cyclohexanes – 1:2 and 1:3 interactions	Reactionandreagents-O.P.AgarwalOrganicStereochemistry-TewariOrganic ReactionMechanisms -Tewari
VII	4	Ш	Active methylene group – Characteristic reactions of active methylene groups in Malonic, Acetoacetic and cyano acetic esters and their synthetic uses.	Reactionandreagents-O.P.AgarwalOrganicStereochemistry-TewariOrganic ReactionMechanisms –Tewari
VIII	4	III	Organic photochemistry: Carbonyl polarization – Reactivity of carbonyl group - acidity of alpha hydrogen. Photochemistry of carbonyl compounds	Reactionandreagents-O.P.AgarwalOrganicStereochemistry-Tewari

				Organic Reaction Mechanisms – Tewari
IX	4	III	Norrish type I and II reactions. Photo reduction, addition and isomerization.	Reactionandreagents-O.P.AgarwalOrganicStereochemistry-TewariOrganic ReactionMechanisms –Tewari
X	4	IV	Reaction Mechanisms: Mechanism of Aldol, Benzoin and Darzen condensation– Claisen, Cannizaro, Reformatsky,	Reactionandreagents-O.P.Agarwal-Organic-StereochemistryTewari-Organic Reaction-Mechanisms –-Tewari-
XI	4	IV	Perkin, Knoevenagal, Michael addition, haloform, Dakin, Wittig and Dieckmann reactions.	Reactionandreagents-O.P.Agarwal-Organic-StereochemistryTewari-Organic Reaction-Mechanisms –-Tewari-

XII	4	IV	Mechanism of reduction with sodium borohydride, LiAlH4, Wolf Kishner and MPV reduction.	Reactionandreagents-O.P.AgarwalOrganicStereochemistry-TewariOrganic ReactionMechanisms -Tewari
XIII	4	V	Molecular rearrangements: Classification as anionotropic – cationotropic and inter molecular – intra molecular. Pinacol-Pinacolone rearrangement Beckmann	Reactionandreagents-O.P.AgarwalOrganicStereochemistry-TewariOrganic ReactionMechanisms –Tewari
XIV	4	V	Claisen rearrangement (sigmatropic), Paraclaisen rearrangement, Favorskii rearrangements, Fries rearrangements (two mechanisms),	Reactionandreagents-O.P.AgarwalOrganicStereochemistry-TewariOrganic ReactionMechanisms -Tewari
XV	4	V	Benzidine rearrangement. (Mechanism, evidence for carbonium ion intermediate formation – migratory attitude – inter / intra molecular rearrangement)	Reactionandreagents-O.P.AgarwalOrganicStereochemistry-Tewari

PCCHJ15

SYNTHETIC ORGANIC CHEMISTRY

Week	No of Hours	Units	Content	Reference
Ι	2	Ι	Retrosynthesis, disconnection approach, synthons, linear and convergent Synthesis	Disconnection Approach- Stuart Warren
II	2	Ι	One group C-X disconnection and two group C-X disconnection. Umpolung of reactivity	Disconnection Approach- Stuart Warren
III	2	Ι	Protection of functional groups (hydroxyl, amino, carbonyl and carboxyl groups).	Disconnection Approach- Stuart Warren
IV	2	Ι	Synthesis of target molecules based on disconnection and synthon approach - Longifolene, camphor	Disconnection Approach- Stuart Warren

V	2	Ι	Reserpine	Disconnection Approach- Stuart Warren
VI	2	Ι	Saccharine, paracetamol, morpholine.	Disconnection Approach- Stuart Warren
VII	2	Π	Assymmetric synthesis asymmetric induction methods, Chiral auxilliary, Chiral pool.	Advanced Organic Chemistry by Clayden & Greeves
VIII	2	Π	Substrate, Chiral catalyst, Chiral reagent,	Advanced Organic Chemistry by Clayden & Greeves
IX	2	II	Enantiomeric excess	Advanced Organic Chemistry by Clayden & Greeves

X	2	II	kinetic resolution methods	Advanced Organic Chemistry by Clayden & Greeves
XI	2	II	Optical resolution	Advanced Organic Chemistry by Clayden & Greeves
XII	2	II	Diastereomeric excess, enantio- discrimination.	Advanced Organic Chemistry by Clayden & Greeves
XIII	2	V	Preparation of various phenoxides.	Organic synthesis by Puneet Karnard
XIV	2	V	Epoxide rearrangement, Stereoselective Claisen rearrangement.	Organic synthesis by Puneet Karnard
XV	2	V	Retro Diel's Alder reaction.	Organic synthesis by Puneet Karnard

UCCHA19

General Chemistry I

Week / Date	No of Hours	Units	Topics	Content
Ι	2	Ι	Valency, oxidation number, oxidation and reduction in terms of oxidation number, calculation of oxidation state - acids, bases, salts, oxidizing and reducing agents. Oxidation, reduction and redox reactions (definition and examples)	Advanced inorganic Chemistry – R.D. Madan
II	2	Ι	Oxidising and reducing agents (definition and examples). Balancing chemical equations - oxidation number method.	Advanced inorganic Chemistry – R.D. Madan

III	2	Ι	Balancing chemical equations - ion electron method.	Advanced inorganic Chemistry – R.D. Madan
IV	2	Ш	Modern periodic law, general classification of elements in periodic table, general characteristics of s, and p block elements	Advanced inorganic Chemistry – R.D. Madan
V	2	Ι	General characteristics of d and f block elements	Advanced inorganic Chemistry – R.D. Madan
VI	2	IV	Acids and Bases- concepts- Arrhenius, Lowry-Bronsted and Lewis acid – base theory, acid- base equilibria,	Physical Chemistry – Puri and Sharma
VII	2	IV	Definition of pH of strong and weak acid solutions, calculation.	Physical Chemistry – Puri and Sharma
VIII	2	IV	Hard and soft acids and bases – definition	Physical Chemistry – Puri and Sharma

IX	2	IV	Buffer solutions, relative strength of acids and bases from Ka and K _b values	Physical Chemistry – Puri and Sharma
X	2	IV	Henderson- Hasselbalch equations.	Physical Chemistry – Puri and Sharma
XI	2	V	Common ion effect, concept of sparingly soluble salts,	Practical Chemistry – O.P Pandey
XII	2	V	Solubilityproductprinciple,relationbetweensolubilityandsolubilityproduct.	Practical Chemistry – O.P Pandey
XIII	2	V	Application of common ion effect and solubility product principle in inorganic qualitative analysis,	Practical Chemistry – O.P Pandey
XIV	2	V	Eliminating the interfering radicals, significance of sodium carbonate extract	Practical Chemistry – O.P Pandey
XV	2	V	Spot test reagents – Magneson, Aluminon, Nesslers, Thiourea, Cupferon and DMG.	Practical Chemistry – O.P Pandey

UECHC16

Chemistry of Natural Products

Week	No of Hours	Units	Content	Reference
I	4	Ι	Carbohydrates: Classification, Chain lengthening and shortening of aldoses, Epimerisation, Constitution of glucose, Reactions of glucose- osazone formation, Cyclic structure- pyranose and furanose forms, Mutarotation and its mechanism	Advanced organic chemistry- Bahl and Bahl, Chemistry of Natural Products- Vol I – Gurdeep Chatwal
Π	4	Ι	Determination of ring size – Haworth projection formula, Constitution of fructose, Reactions of fructose – osazone, Configuration of glucose and fructose	Advanced organic chemistry- Bahl and Bahl, Chemistry of Natural Products- Vol I – Gurdeep Chatwal
III	4	Ι	Constitution of sucrose, maltose, starch and cellulose	Advanced organic chemistry- Bahl and Bahl, Chemistry of Natural Products- Vol I – Gurdeep Chatwal

IV	4	II	Classification of aminoacids- essential and nonessential aminoacids, Preparation of alpha aminoacids and properties- Zwitter ions, Isoelectric points	Advanced organic chemistry- Bahl and Bahl, Chemistry of Natural Products- Vol I – Gurdeep Chatwal
V	4	Π	Synthesis of peptides, Classification of proteins, Denaturation	Advanced organic chemistry- Bahl and Bahl, Chemistry of Natural Products- Vol I – Gurdeep Chatwal
VI	4	Π	Primary and secondary structure of proteins- Helical and Sheet structure	Advanced organic chemistry- Bahl and Bahl, Chemistry of Natural Products- Vol I – Gurdeep Chatwal
VII	4	III	Nucleic acid, Nucleoside, Nucleotide, Phosphodiester bonds, types of nucleic acids	Organic chemistry- Anupa and Anup and Bahl, Chemistry of Natural Products- Vol II – Gurdeep Chatwal
VIII	4	III	RNA and DNA structures,Sequencing of DNA, Synthesising an oligonucleotide array	Organic chemistry- Anupa and Anup and Bahl, Chemistry of Natural Products- Vol II – Gurdeep Chatwal

IX	4	III	Denaturation of RNA and DNA, Replication, Transcription and Translation, Protein synthesis	Organic chemistry- Anupa and Anup and Bahl, Chemistry of Natural Products- Vol II – Gurdeep Chatwal
X	4	IV	Terpenes- Classification, Isoprene rule, Structure elucidation of geraniol, alpha pinene, alpha terpineol	Advanced organic chemistry- Bahl and Bahl, Chemistry of Natural Products- Vol II – Gurdeep Chatwal
XI	4	IV	Structure elucidation of camphor, Alkaloids- Classification, General methods of structure determination.	Advanced organic chemistry- Bahl and Bahl, Chemistry of Natural Products- Vol II – Gurdeep Chatwal
XII	4	IV	Structure elucidation of coniine, piperine and nicotine	Advanced organic chemistry- Bahl and Bahl, Chemistry of Natural Products- Vol II – Gurdeep Chatwal
XIII	4	V	Flavones- Sources, Isolation, Separation,Purificatio n and properties.Structure elucidation of flavone	Chemistry of Natural Products- Vol II – Gurdeep Chatwal

XIV	4	V	Structure elucidation of flavone, Vitamins- Source, Classification.	Chemistry of Natural Products- Vol I and Vol II – Gurdeep Chatwal
XV	4	V	Structure elucidation of pyridoxine, thiamine and ascorbic acid	Chemistry of Natural Products- Vol I – Gurdeep Chatwal

PECHG15

Organometallic and Bioinorganic Chemistry

Week	No of Hours	Units	Content	Reference
Ι	3	Ι	Introduction-18 electron rule and EAN rule – calculation, hapacity- definition.	Organometallic chemistry of transition metals by Robert H. Crabtree
II	3	Ι	Metal carbonyl complexes and poly nuclear carbonyl complexes Preparation and properties, Structure and Bonding.	Organometallic chemistry of transition metals by Robert H. Crabtree
III	3	Ι	Carbonylate ion, Carbonyl hydride complex- Preparation and properties, Structure	Organometallic chemistry of transition metals by Robert H. Crabtree

			and Bonding.	
IV	3	Π	Nitrosyl complex, Metal alkyls - Preparation and properties, Structure and Bonding.	Organometallic chemistry of transition metals by Robert H. Crabtree
V	3	Ι	Carbenes, Carbynes and carbides, non- aromatic alkenes and alkyne complex, metallocenes - Preparation and properties, Structure and Bonding.	Organometallic chemistry of transition metals by Robert H. Crabtree
VI	3	IV	Metallo porphyrin and respiration (cytochromes).	Bioinorganic chemistry by Asim K Das
VII	3	IV	Interaction between heme and dioxygen - Structure and function of haemoglobin	Bioinorganic chemistry by Asim K Das

VIII	3	IV	Ferredoxin and Rubredoxin, Blue copper protein.	Bioinorganic chemistry by Asim K Das
IX	3	IV	Ion transport in membranes, Na, K balance, calcium in living cells (transport and regulation) selectivity of Ca ²⁺ over Mg ²⁺	Bioinorganic chemistry by Asim K Das
X	3	IV	Nitrogen fixation- atmospheric, industrial and biological.	Bioinorganic chemistry by Asim K Das
XI	3	V	Biological role of metalloenzymes - carboxy peptidases	Bioinorganic chemistry by Asim K Das
XII	3	V	Carbonic anhydrase- catalase,	Bioinorganic chemistry by Asim K Das
XIII	3	V	Peroxidase, oxatransferase enzymes, xanthine oxidase.	Bioinorganic chemistry by Asim K Das

XIV	3	V	Metals used for diagnosis.	Bioinorganic chemistry by Asim K Das
XV	3	V	Chemotherapy with particular reference to anticancer drugs (platinum ammine halides, metallocenes and their halides).	Bioinorganic chemistry by Asim K Das

UCCHB19

General Chemistry II

Week	No of Hours	Units	Content	Reference
I	2	Ι	Electron displacement effects – Inductive effect – effect on bond length, dipole moment, reactivity of alkyl halides	Reaction mechanisms including reaction intermediates by Aluwaliah
Π	2	Ι	Strength of carboxylic acids and basic character of amines, Electromeric effect, comparison with inductive effect	Reaction mechanisms including reaction intermediates by Aluwaliah
III	2	I	Mesomeric effect, comparison with inductive effect	Reaction mechanisms including reaction intermediates by Aluwaliah
IV	2	Π	Hyperconjugation, Steric effect	Reaction mechanisms including reaction intermediates by Aluwaliah

V	2	Ι	Bond fission- homolytic and heterolytic, reaction intermediates, carbocations- generation, structure, stability and reactions	Reaction mechanisms including reaction intermediates by Aluwaliah
VI	2	IV	Cabanions- generation, structure, stability and reactions	Reaction mechanisms including reaction intermediates by Aluwaliah
VII	2	IV	Free radicals- generation, structure, stability and reactions	Reaction mechanisms including reaction intermediates by Aluwaliah
VIII	2	IV	Generation of benzyne, nitrenes and carbenes	Reaction mechanisms including reaction intermediates by Aluwaliah
IX	2	IV	Alkanes- chemical properties, mechanism of halogenation of alkanes	Advanced organic chemistry by Bahl and Bahl
X	2	IV	Alkynes- acidity of alkynes, formation of acetylides	Advanced organic chemistry by Bahl and Bahl
XI	2	V	Addition reactions with water, hydrogen halides, halogens	Advanced organic chemistry by Bahl and Bahl

XII	2	V	Oxidation, ozonolysis and hydroxylation with KMnO ₄	Advanced organic chemistry by Bahl and Bahl
XIII	2	V	Exceptional properties of Lithium, diagonal relationship of Lithium and Magnesium	Advanced inorganic Chemistry – R.D. Madan
XIV	2	V	Lithium- occurrence, ores, extraction from phosphate and silicate ores and uses	Advanced inorganic Chemistry – R.D. Madan
XV	2	V	Preparation, properties and uses of lithium carbonate	Advanced inorganic Chemistry – R.D. Madan

Auxilium College (Autonomous), Gandhi Nagar, Vellore – 632 006.

Lesson Plan for the Year 2019–2020

ODD SEMESTER

Programme	B.Sc. Chemistry
Programme Code	U17
Semester	I
Course	General Chemistry-I
Course Code	UCCHA20
Hours	3
Credits	5
Total Hours	45
Max Marks	40+60
Course Instructor/Coordinator	Dr. V. Sugantha Kumari

Week	Portions to be covered	Reference	Teaching methodology
Ι	Unit –IV Gaseous state - kinetic gas equation, derivation, gas laws from the kinetic gas equation, types of velocities - mean, Root Mean Square Velocity (RMS), Most Probable Velocities (MPV), calculation of molecular velocities. (No derivation).	 i) Principles of Physical Chemistry by Puri and Sharma ii)Textbook of Physical Chemistry by P.L.Soni. 	Chalk and Board
II	Maxwell's distribution of molecular velocities (derivation), equipartition of energy, collision number, Collision diameter, mean free path, definition.(No derivation)	 i) Principles of Physical Chemistry by Puri and Sharma ii) Textbook of Physical Chemistry by P.L.Soni. 	Chalk and Board
III	Equipartition of energy, collision number, Collision diameter, mean free path, definition.(No derivation)	 i) Principles of Physical Chemistry by Puri and Sharma ii) Textbook of Physical Chemistry by P.L.Soni. 	Chalk and Board
IV	Real gases – deviation from ideal behavior – van der Waals' equation- Virial equation of state, Boyle's temperature (No derivation).	i) Principles of Physical Chemistry by Puri and Sharma	Chalk and Board

		ii) Textbook of Physical Chemistry by P.L.Soni.	
V	Joule's law, Joule Thomson effect, Joule Thomson Coefficient and its derivation, inversion temperature and its significance. (No derivation)	 i) Principles of Physical Chemistry by Puri and Sharma ii) Textbook of Physical Chemistry by P.L.Soni. 	Chalk and Board
VI	Liquid State - qualitative treatment of the structure of liquids, surface tension – Definition, effects of surface tension, experimental determination – capillary rise method – drop weight method, applications	 i) Principles of Physical Chemistry by Puri and Sharma ii) Textbook of Physical Chemistry by P.L.Soni. 	Chalk and Board
VII	Viscosity – definition, effects of viscosity on temperature and pressure, experimental determination - Saybolt Viscometer and Ostwald's Viscometer method	 i) Principles of Physical Chemistry by Puri and Sharma ii) Textbook of Physical Chemistry by P.L.Soni. 	Chalk and Board

VIII	Unit –III Concept of Hybridization – definition, characteristics of hybrid orbitals, modes of hybridization	i) Advanced Organic Chemistry by B.S Bahl and Arun Bahl	Chalk and Board
IX	Hybridization – tetra valency of carbon, geometry of molecules - methane, ethane, ethylene, acetylene and benzene	ii) Advanced Organic Chemistry by B.S Bahl and Arun Bahl	Chalk and Board
X	Unit –V Classical Mechanics –the e/m of an electron, Rutherford's scattering experiments, Rutherford atomic model.	 i) Principles of Physical Chemistry by Puri and Sharma ii) Textbook of Physical Chemistry by P.L.Soni. 	Chalk and Board
X1	The Bohr theory of hydrogen atom, Sommerfeld extension of the Bohr theory.	 i) Principles of Physical Chemistry by Puri and Sharma ii) Textbook of Physical Chemistry by P.L.Soni. 	Chalk and Board
XII	Photoelectric effect and Compton effect- Wave mechanical concept of the atom, de Broglie's relationship	 i) Principles of Physical Chemistry by Puri and Sharma ii) Textbook of Physical Chemistry by P.L.Soni. 	Chalk and Board

XIII	Davisson and Germer	i) Principles of Physical	Chalk and
	experiment, wave nature of electron, Heisenberg's uncertainty principle	Chemistry by Puri and Sharma	Board
		ii) Textbook of Physical Chemistry by P.L.Soni.	
XIV	Quantum mechanics- postulates of quantum mechanics, concept of operators, angular wave function, Eigen values, Schrodinger wave equation (no derivation) and significance of wave functions.	 i) Principles of Physical Chemistry by Puri and Sharma ii) Textbook of Physical Chemistry by P.L.Soni. 	Chalk and Board
XV	Radial and angular wave functions, probability distribution of electrons, radial probability distribution curves.	i) Principles of Physical Chemistry by Puri and Sharmaii) Textbook of Physical Chemistry by P.L.Soni.	Chalk and Board

Auxilium College (Autonomous), Gandhi Nagar, Vellore – 632 006. Lesson Plan for the Year 2019– 2020 ODD SEMESTER

Programme	M.Sc. Chemistry
Programme Code	P14
Semester	III
Course	Electrochemistry
Course Code	PCCHL15
Hours	3
Credits	4
Total Hours	45
Max Marks	40+60
Course Instructor/Coordinator	Dr. V. Sugantha Kumari

Week	Portions to be covered	Reference	Teaching Methodology
Ι	Unit –I : Activity and Activity coefficient, Mean ionic and Mean ionic activity coefficient, Ionic Strength and related problems. Debye Huckel Theory of Strong electrolytes	 i) Introduction to Electrochemistry by Samuel Glasstone ii) Principles of Physical Chemistry by Puri and Sharma 	Chalk and Board
Π	Unit-I: Determination of activity coefficient by electrochemical method. Debye Huckel limiting law qualitative and quantitative verification of Debye Huckel Limiting law	 i) Introduction to Electrochemistry by Samuel Glasstone ii) Principles of Physical Chemistry by Puri and Sharma 	Chalk and Board
III	Unit-II: Different types of current- kinetic current, catalytic current, current for reversible and irreversible system.	 i) Analytical Chemistry by Khopkar ii) Instrumental Methods of Chemical analysis by M.S. Yadav 	Chalk and Board

IV	Qualitative and quantitative	i) Analytical Chemistry	Chalk and
	application of polarography to	by Khopkar	Board
	inorganic system	i) Instrumental Methods of Chemical analysis by M.S. Yadav	
V	Unit-II: Amperometric titrations,	i) Analytical Chemistry	Chalk and
	theory Types of titration curves	by Khopkar	Board
		ii) Instrumental Methods of Chemical analysis by M.S. Yadav	
VI	Unit-II: Successive titration,	i)Instrumental Methods	Chalk and
	Indicator electrode application	of Chemical analysis by	Board
		M.S. Yadav	
		ii) Analytical Chemistry by Khopkar	
		iii) Principles of Physical	
		Chemistry by Puri and	
		Sharma	
VII	Unit-II: Cyclic Voltammetry and its	i) Instrumental Methods	Chalk and
	application	of Chemical analysis by	Board
		M.S. Yadav	

		 ii) Analytical Chemistry by Khopkar iii) Principles of Physical Chemistry by Puri and Sharma 	
VIII	Unit-III: Electrode-electrolyte	i) Modern	Chalk and
	interface- electrical double layer- Electrocapillary maximum.	Electrochemistry by J. Bockris and Reddy	Board
	Lippmann Equation.	ii) Introduction to Electrochemistry by Samuel Glasstone	
IX	Unit-III: Structure of double layers	i)Modern	Chalk and
	- Helmholtz Perrin, Guoy-	Electrochemistry by	Board
	Chapmann Model of double layers.	J. Bockris and Reddy ii) Introduction to Electrochemistry by Samuel Glasstone	
X	Unit-III: Stern model of electrical double layers. Fick's law of diffusion-Factors affecting Fick's law of diffusion-Significance.	i) ModernElectrochemistry byJ. Bockris and Reddy	Chalk and Board

		ii) Introduction to	
		Electrochemistry by	
		Samuel Glasstone	
		Samuel Glassione	
XI	Unit-III: Membrane potential –	i) Modern	Chalk and
	current across the biological	Electrochemistry by	Board
	membrane– Axon membrane	J. Bockris and Reddy	
		ii) Introduction to	
		Electrochemistry by	
		Samuel Glasstone	
XII	Unit-III- Electrokinetic	i) Modern	Chalk and
	phenomena- Electroosmosis,	Electrochemistry by	Board
	Electrophoresis, Sedimentation		
	Potential and Streaming potential.	J. Bockris and Reddy	
		ii) Introduction to	
		Electrochemistry by	
		Samuel Glasstone	
		Samuel Glassione	
VIII	Unit IV. One not official	i) Modern	Challes at
XIII	Unit-IV: Over potential-	i) Modern	Chalk and
	mechanism of the hydrogen and	Electrochemistry by	Board
	oxygen evolution reaction. Rates of	J. Bockris and Reddy	
	simple electrode reactions-		
	elementary electron –electrode	ii) Introduction to	
	process.	Electrochemistry by	
		Samuel Glasstone	

XIV	Unit-IV: Butler-Volmer equation for single step electron transfer reaction, significance of electron exchange current density and symmetry factor. Rates of multistep electrode reactions, Butler–Volmer equation for a multistep reaction, transfer coefficient and its significance.	 i) Modern Electrochemistry by J. Bockris and Reddy ii) Introduction to Electrochemistry by Samuel Glasstone 	Chalk and Board
XV	Unit-IV: Corrosion of metals – Theories of corrosion- types of corrosion-Pourbaix diagram Passivation of metals- Flade Potential- Evan's diagram Electro deposition – principle and applications, electrochemical reactions of technological interest.	 i) Modern Electrochemistry by J. Bockris and Reddy ii) Introduction to Electrochemistry by Samuel Glasstone 	Chalk and Board

Auxilium College (Autonomous), Gandhi Nagar, Vellore – 632 006. Lesson Plan for the Year 2019 – 2020 ODD SEMESTER

Programme	M.Sc. Chemistry
Programme code	P14
Semester	I
Course	Polymer Chemistry
Course Code	PECHA19
Hours	1
Credits	4
Total Hours	15
Max Marks	40+60
Course Instructor/Coordinator	Dr. V. Sugantha Kumari

Week	Portions to be covered	Reference	Teaching Methodology
Ι	Unit –II : Polymer Characterization methods - Crystalline nature- degree of crystallinity, degree of crystallisability	 i) Polymer Science by V.R. Gowariker, N.V. Viswanathan and Jayadev Sreedhar ii) Textbook of Polymer Science by F.W. Billmeyer 	Chalk and Board
II	X-ray diffraction studies.	 i) Polymer Science by V.R. Gowariker, N.V. Viswanathan and Jayadev Sreedhar ii) Textbook of Polymer Science by F.W. Billmeyer 	Chalk and Board
III	Glass transition temperature (Tg) – Definition, Factors affecting glass transition temperature	 i) Polymer Science by V.R. Gowariker, N.V. Viswanathan and Jayadev Sreedhar ii) Textbook of Polymer Science by F.W. Billmeyer 	Chalk and Board
IV	Importance of glass tranisition temperature-	 i) Polymer Science by V.R. Gowariker, N.V. Viswanathan and Jayadev Sreedhar ii) Textbook of Polymer Science by F.W. Billmeyer 	Chalk and Board

V	Relationship between glass transition temperature and melting point.	 i) Polymer Science by V.R. Gowariker, N.V. Viswanathan and Jayadev Sreedhar ii) Textbook of Polymer Science by F.W. Billmeyer 	Chalk and Board
VI	Study of polymers – Differential Scanning Calorimetric (DSC)	 i) Polymer Science by V.R. Gowariker, N.V. Viswanathan and Jayadev Sreedhar ii) Textbook of Polymer Science by F.W. Billmeyer 	Chalk and Board
VII	Thermo gravimetric analysis of polymers	 i) Polymer Science by V.R. Gowariker, N.V. Viswanathan and Jayadev Sreedhar ii) Textbook of Polymer Science by F.W. Billmeyer 	Chalk and Board
VIII	Relation to structure - surface morphology- Scanning Electron Microscopy (SEM).	 i) Polymer Science by V.R. Gowariker, N.V. Viswanathan and Jayadev Sreedhar ii) Textbook of Polymer Science by F.W. Billmeyer 	Chalk and Board

IX	Size of the particle	i) Polymer Science by V.R. Gowariker, N.V.	Chalk and
	determination –	Viswanathan and Jayadev Sreedhar	Board
	Transmission Electron Microscopy (TEM)	ii) Textbook of Polymer Science by	
		F.W. Billmeyer	
X	Biopolymers- natural- starch, cellulose, chitosan	i) Polymer Science by V.R. Gowariker, N.V. Viswanathan and Jayadev Sreedhar	Chalk and Board
	and silk	ii) Textbook of Polymer Science by	
		F.W. Billmeyer	
XI	Synthetic polymers -	i) Polymer Science by V.R. Gowariker, N.V.	Chalk and
	polyvinyl alcohol (PVA),	Viswanathan and Jayadev Sreedhar	Board
	polyvinylpyrrolidone and polylactic acid.	ii) Textbook of Polymer Science by	
		F.W. Billmeyer	
XII	Piomedical application	i) Polymer Science by V.R. Gowariker, N.V.	Chalk and
ЛП	Biomedical application of biopolymers- dental		Board
	materials, ophthalmology,	Viswanathan and Jayadev Sreedhar ii) Textbook of Polymer Science by	board
	orthopeadic Implants,	F.W. Billmeyer	
		iii) Polymer Science and Technology by R. Joel	
XIII	Biomedical application	i) Polymer Science by V.R. Gowariker, N.V.	Chalk and
	of biopolymers in tissue	Viswanathan and Jayadev Sreedhar	Board

	engineering and drug	ii) Textbook of Polymer Science by	
	delivery.	F.W. Billmeyer	
		iii) Polymer Science and Technology by R. Joel	
XIV	Industrial Applications of	i) Polymer Science by V.R. Gowariker, N.V.	Google Meet
	biopolymers- packaging,	Viswanathan and Jayadev Sreedhar	
	food packaging.	ii) Textbook of Polymer Science by	
		F.W. Billmeyer	
		iii) Polymer Science and Technology by R. Joel	
XV	Industrial application of	i) Polymer Science by V.R. Gowariker,	Google Meet
	biopolymers in automotive and	N.V. Viswanathan and Jayadev Sreedhar	
	electronics application	ii) Textbook of Polymer Science by	
		F.W. Billmeyer	
		iii) Polymer Science and Technology by R. Joel	

Week	Portions to be covered	Reference	Platform (LMS)
I	Alkanes- chemical properties, mecha of free radical reactions, halogenat alkanes	-	Google Meet
II	Alkenes- addition reactions of alkene with hydrogen, halogens, hydrogen halides Markownikoff's rule and anti Markownikoff's rule (peroxide effect), sulphuric acid, water.	Advanced Organic Chemistryby B.S Bahl and Arun Bahl	Google Meet
111	Markownikoff's rule and anti Markownikoff's rule (peroxide effect), sulphuric acid, water.	Advanced Organic Chemistryby B.S Bahl and Arun Bahl	Google Meet
IV	Hydroboration, ozonolysishydroxylatio with KMnO4, allylic substitution by NE	-	Google Meet
V	Dienes- types, stability and 1,2 and 1,4 addition reactionsDiels–Alder reactionandits application.	Advanced Organio Chemistryby B.S Bahl and Arun Bahl	Google Meet

VI	Mesomorphic stateLiquid crystals- classification, thermotropic and lyotropic, Smectic, Nematic and Cholestric liquid crystals	 i) Principles of Physical Chemistry by Puri and Sharma ii) Textbook of Physical Chemistry by P.L.Soni. 	Chalk and talk method
VII	Molecular arrangements and its applications.	Principles of Physical Chemistry by Puri and Sharma	
VIII	Solutions- solutions of gases in liquids, Henry's law. Solutions of liquids in liquids Raoult's law	Advanced Organic Chemistryby B.S Bahl and Arun Bahl	Chalk and talk method
IX	Binary liquid mixturesand ideal solutions Deviations from ideal behaviour,	Advanced Organic Chemistryby B.S Bahl and Arun Bahl	Chalk andtalk method
X	Vapour pressureomposition curves and boiling point composition curves	Principles of Physical Chemistry by Puri and Sharma	
X1	Distillation -types of distillation, fractional distillation, steam distillation.	Principles of Physical Chemistry by Puri and Sharma	

XII	Vacuum distillation, column distillation and azeotropic distillation.	Principles of Physical Chemistry by Puri and Sharma	
XIII	Colloidal State colloidal systems classification of colloids	Principles of Physica Chemistry by Puri and Sharma	
XIV	Preparation of colloidal solutions, dispersion methods anothensation methods	Principles of Physical Chemistry by Puri and Sharma Textbook of Physical Chemistry by P.L.Soni.	
XV	Properties of colloidal systems Tyndall effect, importance and applications of colloids	Principles of Physical Chemistry by Puri and Sharma Textbook of Physical Chemistryby P.L.Soni.	

Auxilium College (Autonomous), Gandhi Nagar, Vellore ±632 006.

Lesson Plan for the Year 2019 ±2020

EVEN SEMESTER

II M.Sc., Chemistry

PCCHM15-Natural Products and Bioorganic Chemistry

Week	Portions to be covered	Reference	Platform (LMS)
1	Amino acids- metabolism of amino acidsoxidative	Organic Chemistry	Chalk and talk
	deamination, transamination reactions	by I. L. Finar.	method
		Organic Chemistry	
		of Natural Products	
		by Gurdeep R.	
		Chatwal	
11	Metabolism of aminoacids Urea cycle.	Organic Chemistry	Chalk and talk
		by I. L. Finar.	method
		Organia Chamiatry	
		Organic Chemistry	
		of Natural Products	
		by Gurdeep R.	
		Chatwal	
	Dentides synthesis of this entid Devenues 7 muss	Organia Chamiatry	Chally and tally
	Peptides synthesis of tripeptideBergmann Zervas	Organic Chemistry	
	method, Hydrazinolysis and DCC methods	by I. L. Finar.	method
		Organic Chemistry	
		of Natural Products	
		by Gurdeep R.	
		Chatwal	

IV	Solid phase peptide synthesi	Organic Chemistry	Chalk and talk
		by I. L. Finar.	method
		Organic Chemistry	
		of Natural Products	
		by Gurdeep R.	
		Chatwal	
V	Structural aspects of proteinsrimary, secondary	Organic Chemistry	
	and tertiary structure of proteins.	by I. L. Finar.	method
		Organic Chemistry	
		of Natural Products	
		by Gurdeep R.	
		Chatwal	
VI	Determination ostructure of proteins by XRD	Organic Chemistry	Chalk and talk
	method	by I. L. Finar.	method
		Organic Chemistry	
		of Natural Products	
		by Gurdeep R	
		Chatwal	
VII	Determination of structure of proteins by cryoscop	Organic Chemistry	Chalk and talk

		Organic Chemistry of Natural Products by Gurdeep R. Chatwal	
VIII	Biosynthesis of amino acidsphenylalanine	Principles of Biochemistry by Nelson and Cox Lehninger.	Chalk and talk method
IX	Biosynthesis ofyrosine andproline only	Principles of Biochemistry by Nelson and Cox Lehninger.	Chalk and talk method
Х	Nucleic acids introduction- types of nucleic acids structure of nucleosides and nucleotides.DNA RNA-polynucleotide chain	Principles of Biochemistry by Nelson and Cox Lehninger.	Chalk and talk method
XI	Structural features of DNA WatsonCrick Model.	Principles of Biochemistry by Nelson and Cox Lehninger.	Chalk and talk method
XII	Structure of RNAPrimary and Secondary structure of RNA	Principles of Biochemistry by Nelson and Cox Lehninger.	Chalk and talk method
XIII	Chemical and enzymatic hydrolysis of nucleic acid	Principles of Biochemistry by	Chalk and talk method

		Nelson and Cox Lehninger.	
XIV	DNA sequence determination by chemical and enzymation enzymation by chemical and	Principles of Biochemistry by Nelson and Cox Lehninger.	Chalk and talk method
XV	Genetic code origin and evolution,	Principles of Biochemistry by Nelson and Cox Lehninger.	Chalk and talk method

Auxilium College (Autonomous), Gandhi Nagar, Vellore ±632 006. Lesson Plan for the Year 2019 ±2020 EVEN SEMESTER

Programme	M.Sc. Chemistry
Programme code	P14
Semester	П
Course	Group Theory and Quantum Chemistry
Course Code	PCCHF19
Hours	3
Credits	4
Total Hours	45
Max Marks	40+60
Course Instructor/Coordinator	Dr. V. Sugantha Kumari

Week	Portions to be covered	Reference	Platform (LMS)
I	Introduction- symmetry	Group Theory and Its	Google Meet
	elements and symmetry	Applications to Chemistry	
	operations, group postulates ar	by K. V. Raman	
	types ofgroups, sub groups, abelian and no a belian groups	Group Theory in Chemistry by M. S. Gopinathan and	
		V. Ramakrishnan	
	Group multiplication table,	Group Theory and Its	Google Meet
	similarity transformations and	Applications to Chemistry	
	classes of symmetry operations	by K. V. Raman	
		Group Theory in	
		Chemistry by M. S.	
		Gopinathan and	
		V. Ramakrishnan	
III	Molecular pointgroups- point	Group Theory and Its	Google Meet
	groups of molecules, point	Applications to Chemistry	
	groups of tetrahedral and	by K. V. Raman	
	octahedral molecules. Identification of symmetry operations and determination o point groups.	Group Theory in Chemistry by M. S. Gopinathan and V. Ramakrishnan	
IV	Matrices- matrix representation	Group Theory and ts	Google Meet
IV	of symmetry operations,	Applications to Chemistry by K. V. Raman	-

	reducible and irreducible	Group Thery in	
	representations.	Chemistry by M. S.	
		Gopinathan and	
		V. Ramakrishnan	
V	Orthogonality theorem and its	Group Theory and	Chalk and talk method
	consequences, properties of	Applications to Chemistry	
	irreducible representations,	by K. V. Raman	
	labeling of irreducible representations.	Group Theory in	
		Chemistry by M. S.	
		Gopinathan and	
		V. Ramakrishnan	
VI	Crystallographic symmetrythe	Group Theory and	Chalk and talk method
	32 crystallographic point groups	Applications to Chemistry	
	- space groupsscrew axis	by K. V. Raman	
	glide plane s comparison of crystallographic symmetry with	Group Theory in	
	molecular symmetry.	Chemistry by M. S.	
		Gopinathan and	
		V. Ramakrishnan	
VII	Construction of character table	Group Theory and	Chalk and talk method
	for C_{2V} and G_{V} point groups	Applications to Chemistry	
	explanation for he complete	by K. V. Raman	
	character table for $_{\mathcal{Q}}$ and G_{V}	Group Theory in	
	point groups.	Chemistry by M. S.	
		Gopinathan and	
		V. Ramakrishnan	

	Selection rules for vibrational IF and Raman spectra. Mutual exclusion rule for molecules wit centre of symmetry. Applications to molecular vibrations (IR and Raman) for determining symmetry of norma modes of vibration in nonlinear molecules I ₂ O, CH ₄ , BF ₃ and NH ₃ using group theory	Applications to Chemistry by K. V. Raman Group Theory in Chemistry by M. S. Gopinatharand V. Ramakrishnan Group Theory anits Applications to Clemistry	Chalk and talk method Chalk and talk method
X	Hybrid orbitals in nonlinear	Group Theory and a chemistry	Chalk and talk method
	molecules Cև, XeF4, BF3, SF6, NH3. Application of group	Applications to Chemistry by K. V. Raman	

	theory to electronic spectra of	Group Theory in	
	ethylene and formaldehyde.	Chemistry by M. S.	
		Gopinathan and	
		V. Ramakrishnan	
		Group theory and its	
		application by A.	
		Salahuddin Kunju and	
		G. Krishnan	
XI	Approximation methods	Quantum Chemistry by	Chalk and talk method
	variation methods trial wave function - application of	R. K. Prasad	
	variation method to hydrogen	Quantum Chemistry by D	
	and helium atoms.	A. Mcquarie	
		Quantum Chemistry by A.	
		K. Chandra	
XII	Perturbation method and its	Quantum Chemistry by	Chalkand talk method
	application to particle in one dimensional box.	R. K. Prasad	
		Quantum Chemistry by D	
		A. Mcquarrie	
		Quantum Chemistry by	
		A. K. Chandra	
XIII	Born Oppenheimer	Quantum Chemistry by	Chalk and talk method
	approximation treatment of molecules application to helium	R. K. Prasad	
	atom. Hydrogen molecule	Quantum Chemistry by	
	atom. Hydrogen molecule	Quantum Chemistry by	

	Heiter-London theory or valence	D. A. Mcquarrie	
	bond treatment energy level diagram.	Quantum Chemistry by	
		A. K. Chandra	
XIV	Linear Combination of Atomic	Quantum Chemistry by	Chalk and talk method
	Orbitals (LCAO)- molecular orbital theory for hydrogen	R. K. Prasad	
	molecule ion and hydrogen	Quantum Chemistry by	
	molecule.	D. A. Mcquarrie	
		Quantum Chemistry by	
		A. K. Chandra	
XV	Huckel's theory for conjugated	Quantum Chemistry by	Chalk and talk method
	molecules ethylene, butadiene and benzenesemi empirical	R. K. Prasad	
	methods Slater orbital and	Quantum Chemistry by	
	Hartree FockSelf Consistent Field (HFSCF) methods.	D. A. Mcquarrie	
		Quantum Chemistry by	
		A. K. Chandra	

Auxilium College (Autonomous), Gandhi Nagar, Vellore – 632 006.

Lesson Plan for the year 2019 – 2020

ODD SEMESTER

UACHA19 - Allied chemistry I

Wee k	Portions to be covered	Reference	Platform (LMS)
1	Chemical kinetics - rate of reaction, rate law, factors affecting rate of the reaction	Principles of Physical Chemistry B. R. Puri, L. R Sharma and M.S Pathania	Chalk and Board
2	Molecularity and Order of the reaction, difference between order and molecularity	Principles of Physical Chemistry B. R. Puri, L. R Sharma and M.S Pathania	Chalk and Board
3	Methods of determining the order of a reaction, Collision theory for a bimolecular reaction	Textbook of Allied Chemistry V.Veeraiyan and A.N.S. Vasudevan	Chalk and Board
4	Derivation of rate constant of a first order reaction and half life period, Arrhenius theory- effect of temperature on reaction rate	Principles of Physical Chemistry B. R. Puri, L. R Sharma and M.S Pathania	Chalk and Board
5	Introduction to qualitative and quantitative analysis, Principles of volumetric analysis	Principles of Inorganic Chemistry B.R Puri, L. R Sharma, and Kalia K. C	Chalk and Board
6	Separation and purification techniques	Textbook of Allied	

	– extraction, distillation and	Chemistry	
	crystallization	V.Veeraiyan and A.N.S. Vasudevan	Chalk and Board
7	Chromatography- column chromatography - principle, packing of columns, method of separation, identification of compounds and applications.	Fundamentals of analytical chemistry Skoog, Douglas A. West, Donald M	Chalk and Board
8	Paper chromatography – principle, procedure, R_f value and applications	Textbook of Allied Chemistry V.Veeraiyan and A.N.S. Vasudevan	Chalk and Board
9	Thin layer chromatography - principle, procedure, R _f value and applications	Textbook of Allied Chemistry V.Veeraiyan and A.N.S. Vasudevan	Chalk and Board
10	Cements, setting of cements	Industrial chemistry Jain and Jain	Chalk and Board
11	Explosives - TNT	Textbook of Allied Chemistry V.Veeraiyan and A.N.S. Vasudevan	Chalk and Board
12	Nitroglycerine and Dynamite	Textbook of Allied Chemistry V.Veeraiyan and A.N.S. Vasudevan	Chalk and Board

I M.Sc. Chemistry – semester I

PCCHC19 – KINETICS AND PHOTOCHEMISTRY

Wee	Portions to be covered	Reference	Platform
k			(LMS)
1	Catalysis- Homogeneous catalysis - Acid-Base catalysis – types of acid-base catalysis specific and general acid- base catalysis. Mechanisms and kinetics of acid-base catalysed reactions- protolytic and prototropic mechanism – Bronsted catalysis law	Chemical kinetics by Laidler Chemical kinetics by Rajaram Kuriocose	Chalk and Board
2	Enzyme catalysis – types of enzyme catalysis, rate of enzymes catalysed reaction by Michaelis-Menton mechanism – study of effect of substrate concentration, pH and temperature on enzyme catalysed reactions – inhibition in enzyme catalysed reactions.	Chemical kinetics by Laidler Chemical kinetics by Rajaram Kuriocose	Chalk and Board
3	Heterogeneous catalysis - surface reactions, types - physisorption and chemisorption, difference between physisorption and chemisorption, Lennard-Jones plots, Adsorption isotherms- Langmuir and BET isotherms – Postulates and derivations.	Chemical kinetics by Laidler Chemical kinetics by Rajaram Kuriocose	Chalk and Board
4	Kinetics of surface reactions – unimolecular and bimolecular reactions, catalysis by semiconductor oxides (n-type and p-type). Mechanism of heterogeneous catalytic reactions, Langmuir and Rideal-Eley mechanism-adsorption co-efficient and its significance.	Chemical kinetics by Laidler Chemical kinetics by Rajaram Kuriocose	Chalk and Board
5	Complex reactions- definition with examples, kinetics of reversible, consecutive and parallel reaction, Fast reactions - relaxation methods - pressure and temperature jump methods	Chemical kinetics by Laidler Chemical kinetics by Rajaram Kuriocose	Chalk and Board
6	Chain reactions - types of chain reaction (Stationary and non-stationary, General treatment of chain reactions – chain length – explosion limits.	Chemical kinetics by Laidler Chemical kinetics by	Chalk and Board

		Rajaram Kuriocose	
7	Rice Herzfeld mechanism – order of reactions of unity, one-half and three-halves for photolysis of acetaldehyde, Stopped flow and flash photolysis methods.	Chemical kinetics by Laidler Chemical kinetics by Rajaram Kuriocose	Chalk and Board
8	Photochemistry - Introduction, Absorption and emission of radiation – intensity distribution in the electronic, vibrational species - Franck Condon Principle, Jablonski diagram- radiative and non-radiative processes- fluorescence and phosphorescence	Fundamentals of photochemistry by Mukherjee Photochemistry by Singh Photochemistry by Gurdeep Raj	Chalk and Board
9	E-type and P- type delayed fluorescence - spin forbidden radiative transition - internal conversion and intersystem crossing, E-type and P- type delayed fluorescence - spin forbidden radiative transition - internal conversion and intersystem crossing	Fundamentals of photochemistry by Mukherjee Photochemistry by Singh Photochemistry by Gurdeep Raj	Chalk and Board
10	Decay of electronically excited states, Dissociation and predissociation of diatomic molecules - energy transfer process. Photophysical processes - kinetics of unimolecular and bimolecular photophysical processes- kinetic treatment of excimer and exciplex formation.	Fundamentals of photochemistry by Mukherjee Photochemistry by Singh Photochemistry by Gurdeep Raj	Chalk and Board
11	Quenching - static and dynamic quenching- Stern- Volmer equation, Photochemical reactions - Photo assisted mechanism, hydrogen and halogen reactions	Fundamentals of photochemistry by Mukherjee Photochemistry by Singh Photochemistry by Gurdeep Raj	Chalk and Board
12	Kinetics of photochemical reaction, photoredox, photosubstitution, photoisomerization and	Fundamentals of photochemistry by	Chalk and

	photosensitized reactions.	Mukherjee	Board
		Photochemistry by Singh	
		Photochemistry by Gurdeep Raj	
13	Photovoltaic and photogalvanic cells, photo assisted electrolysis of water, application of solar energy conversion, G value - radiolysis of water – hydrated electron, Ion pair yield.	Fundamentals of photochemistry by Mukherjee Photochemistry by Singh Photochemistry by Gurdeep Raj	Chalk and Board
14	Radiation chemistry – Interaction of high-energy radiation with matter -primary and secondary processes.	Fundamentals of photochemistry by Mukherjee Photochemistry by Singh Photochemistry by Gurdeep Raj	Chalk and Board
15	Photocatalysis – applications of TiO ₂ photocatalyst for oxidation of organic pollutants – photochemical reaction of vision.	Fundamentals of photochemistry by Mukherjee Photochemistry by Singh Photochemistry by Gurdeep Raj	Chalk and Board

II M.Sc. Chemistry – Semester III

PCCHL15 - ELECTROCHEMISTRY

Week	Portions to be covered	Reference	Platform
------	------------------------	-----------	----------

			(LMS)
1	Fuel cells - efficiency, Types of fuel cells	Electrochemistry by Bockris and Reddy	Chalk and Board Online PPT
2	Alkaline fuel cell, phosphoric acid fuel cell	Electrochemistry by Bockris and Reddy	Chalk and Board
3	High temperature and solid polymer electrolyte fuel cell	Electrochemistry by Bockris and Reddy	Chalk and Board
4	Kinetics of fuel cell	Electrochemistry by Bockris and Reddy	Chalk and Board
5	general development of fuel cell technology	Electrochemistry by Bockris and Reddy	Chalk and Board
6	Electrochemical sensors- ion selective electrodes	Electrochemistry by D.R. Crow	Chalk and Board
7	Problems with ion selective electrode	Electrochemistry by D.R. Crow	Chalk and Board
8	Chemically modified electrodes – gas sensing electrodes	Electrochemistry by D.R. Crow	Chalk and Board
9	Principle and working of Enzyme electrodes	Electrochemistry by D.R. Crow	Chalk and Board
10	Sensors based on modified metal oxide field effect transistors (MOSFET)	Electrochemistry by D.R. Crow	Chalk and Board
11	The wall jet ring disc electrodes (WJRDE).	Electrochemistry by D.R. Crow	Chalk and Board
12	Debye Huckel Limiting law - derivation	Physical chemistry by Puri and Sharma	Chalk and Board
13	Quantitative verification of Debye Huckel limiting law	Physical chemistry by Puri and Sharma	Chalk and Board
14	Qualitative verification of Debye Huckel limiting law	Physical chemistry by Puri and Sharma	Chalk and Board
15	Debye Huckel limiting law at appreciable	Physical chemistry by	Chalk and Board

	concentration	Puri and Sharma	

Auxilium College (Autonomous), Gandhi Nagar, Vellore – 632006.

Lesson Plan for the year 2019- 2020

EVEN SEMESTER

UACHB19- ALLIED CHEMISTRY

Week / Date	No of Hours	Units	Topics	Teaching Platform	Learning Resources *
I week	2	III	Ionic equilibria, strong and weak electrolytes, common ion effect,	Chalk and Board	Allied chemistry by Gopalan and sundaram.
II Week	2	III	Definition of pH, buffer solution.	Chalk and Board	Electrochemistry by M.S.Yadav.
III Week	2	III	Electrochemical cells- construction	Chalk and Board	
IV Week	2	III	Definition of emf, standard electrode potential,	Chalk and Board	Electrochemistry by Samuel
V Week	2	ш	Types of cells- primary and secondary, standard hydrogen electrode, calomel electrode.	Chalk and Board	Electrochemistry by M.S.Yadav.
VI Week	2	III	Electrophoresis, electrodialysis, and electro- osmosis.	Chalk and Board	Electrochemistry by M.S.Yadav.
VII Week	2	IV	Photochemistry – laws of light absorption – Lamberts		Allied chemistry by Gopalan and

			law and Lambert-Beer's Law.	Chalk and Board	sundaram.
VIII	2	IV	Grotthus – Draper law and Stark – Einstein law.	Chalk and Board	Photochemistry by Mukherjee.
IX Week	2	IV	Quantum yield – examples of photochemical reaction – kinetics of hydrogen – halogen reaction.	Chalk and Board	Photochemistry by Mukherjee.
X Week	2	IV	Jablonski diagram – fluorescence, phosphorescence, photosensitization, and chemiluminescence.	Chalk and Board	Allied chemistry by Gopalan and sundaram.
XI Week	2	V	Causes and treatment of Cancer, AIDS.	Chalk and Board	General reference from net.
XII Week	2	V	Causes and treatment of Diabetes.	Chalk and Board	nom net.

I M.Sc. Chemistry/I M.Sc. Electronic media – semester II

PNHRA 19 - HUMAN RIGHTS

week	No of Hours	Units	Topics	Teaching Methodology	Learning Resources

Date					
I – III	6	1	Types of rights, elements of rights	Chalk and Board	College book and reference from net
IV- VI	6	2	Indian Constitution, Federalism characteristics, Directive principles, Constitutional remedies	Chalk and Board	College book and reference from net
VI – IX	6	3	Indian constitution, rights, articles	Chalk and Board	College book and reference from net
X- XII	6	4	Universal declaration of Human Rights, Organs of UDHR	Chalk and Board	College book and reference from net
XIII- XV	6	5	Human trafficking, problems of children and adult, National children policy	Chalk and Board	College book and reference from net

II M.Sc. Chemistry – Semester III

PCCH015 - THERMODYNAMICS

Week / Date	No of Hours	Units	Topics	Learning Platform	Learning Resources *
I Week	4	Ι	Partial molar properties -	Chalk and Board	Thermodynamics by
			Partial molar free energy		Rajaram Curiocose.
			(Chemical potential) - Partial		
			molar volume and Partial		
			molar heat content-their		
			significance.		
II Week	4	Ι	Variation of chemical potential with temperature	Chalk and Board	Thermodynamics for students
			and pressure, Duhem		

			Margules equation -		Samuel Glasstone.
			Determination of partial molar properties by general method, method of intercept.	Chalk and Board	Physical Chemistry by Puri and Sharma.
III Week	4	Ι	Determination of partial molar properties by Direct method, Apparent molar properties. Definition of fugacity-Variation of fugacity with temperature and pressure.	Chalk and Board	Physical Chemistry by Puri and Sharma.
IV Week	4	Ι	Concept of activity and activity co-efficient. Determination of standard free energies - Choice of standard states -determination of activity and activity co- efficient of non-electrolytes.	Chalk and Board	Physical Chemistry by Puri and Sharma
V Week	2	III	Factorization of molecular partition function, Mixture of gases.	Chalk and Board	Thermodynamics by Rajaram Curiocose.
VI Week	4	III	Evaluation of the independent molecular partition function- Translational, Rotational, Vibrational, Electronic and Nuclear partition function	Chalk and Board	Thermodynamics for students by Samuel Glasstone.
VII Week	4	Ш	Law of equi partition of energies.Heat capacity of solids - Einstein model and Debye model.	Chalk and Board	Physical Chemistry by Puri and Sharma
VIII Week	4	IV	Nuclear spin statistics – ortho - para nuclear states - ortho		Thermodynamics by Rajaram Curiocose.

			para hydrogen Nuclear spin statistics of Deuterium, Application of statistical thermodynamics	Chalk and Board Chalk and Board	Thermodynamics for students by Samuel Glasstone.
IX Week	4	IV	Electron gas in metals, Black body radiation - Planck's distribution law, Stefan-	Challe and Decad	Physical Chemistry by Puri and Sharma
X Week	4	IV	Boltzmann law, Wein's law Uses of spectroscopic and structural data to calculate thermodynamic functions	Chalk and Board Chalk and Board	Physical Chemistry by Puri and Sharma
XI Week	4	V	Non equilibrium thermodynamics: Postulates of non equilibrium thermodynamics - conservation of mass and energy - entropy production	Chalk and Board	Thermodynamics by Rajaram Curiocose. Thermodynamics for
XII Week	4	V	entropy Production in chemical reactions - entropy flow in open systems.	Chalk and Board	students by Samuel Glasstone.
XIII Week	4	v	Transformation properties of rates and affinities - linear laws relative to fluxes and forces.	Chalk and Board	Physical Chemistry by Puri and Sharma
XIV Week	4	V	Curie's theorem, Onsagar's reciprocity relation, Relaxation phenomenon.	Chalk and Board	Thermodynamics by Rajaram Curiocose.

Auxilium College (Autonomous), Gandhi Nagar, Vellore – 632 006.

Lesson Plan for the year 2019 – 2020

ODD SEMESTER

SKILL-BASED ELECTIVE

II B.Sc. CHEMISTRY

USCHB316 - MEDICINAL CHEMISTRY

Week	TT •4	Portions to be covered	Reference	Teaching
WCCK	Unit	Tortions to be covered	Reference	Methodology
		First Aid - important		
1	Ι	rules of first aid, first aid	A Textbook of	Chalk and
		box, cuts and abrasion.	Pharmaceutical	board
			Chemistry	
			Dr. Jayashree	
			Ghosh	
		Bruises, bleeding,		
2	Ι	fractures, burns and	A Textbook of	Chalk and board
		poisonous bites.	Pharmaceutical	
			Chemistry	
			Dr. Jayashree	
			Ghosh	

		Detection of		
3	Ι	hallucinogens, poisons	A Textbook of	Chalk and board
		and antidotes for	Pharmaceutical	
		poisoning.	Chemistry	
			Dr. Jayashree	
	н		Ghosh	<u> </u>
4	II	Common Medicines -	Fundamental	Chalk and board
		analgesics, antipyretics	Concepts of	
		and anti-inflammatory	Applied	
		agents.	Chemistry	
			Dr. Jayashree	
~			Ghosh	<u> </u>
5	II	Antiseptics, antibiotics	Fundamental	Chalk and board
		and antidepressants.	Concepts of	
			Applied	
			Chemistry	
			Dr. Jayashree	
			Ghosh	<u> </u>
6	II	Disinfectants, sedatives,	Fundamental	Chalk and board
		anesthetics – definition,	Concepts of	
		examples, uses and side	Applied	
		effects.	Chemistry	
			Dr. Jayashree	
		.	Ghosh	
7	III	Indian medicinal plants -	Indian Medicinal	Chalk and board
		medicinal properties of	plants	
		neem, keezhanelli,	An Illustrated	
		sembaruthy, thulsi and		
		thoothuvalai.	C. P. Khare	

turmeric, garlic, senavu, plants nerunji and curry leaves An Illustrated Dictionary C. P. Khare	und hoard
Dictionary	und hoard
	und hoard
C. P. Khare	und hoard
	and hoard
	and hoard
9 III Perandai, thipili, Indian Medicinal Chalk a	
vallarai, karunjeeragam plants	
and flax seeds. An Illustrated	
Dictionary	
C. P. Khare	
10IVMedicamentsinPracticalChalk a	and board
formulations - aerosol Pharmaceutical	
inhalations, capsules, Chemistry	
creams and emulsions. A.H.Beckett and	
J.B.Stenlake	
11IVEye drops, injections,PracticalChalk a	and board
ointments and Pharmaceutical	
suppositories. Chemistry	
A.H.Beckett and	
J.B.Stenlake	
12IVTablets, tonic, syrup andPracticalChalk a	and board
hydrogels – definition, Pharmaceutical	
examples and uses. Chemistry	
A.H.Beckett and	
J.B.Stenlake	
13VMedical applications of BiomaterialsBiomaterialsChalk a	and board
polymers – biomaterials Sujatha V. Bhat	
- definition and	
characteristics, ceramic	

		implants and metallic		
		implants.		
14	V	Biomedical applications	Biomaterials	Chalk and board
		of polyurethane,	Sujatha V. Bhat	
		polydimethylsiloxane,		
		polyalkylsulphone and		
		polymethylmethacrylate.		
15	V	Acrylic hydro gels, poly	Biomaterials	Chalk and board
		vinyl chloride,	Sujatha V. Bhat	
		polypropylene,		
		polyethylene and		
		polylactic acid.		

UACHA319 – Allied Chemistry I

Week	Unit	Portions to be covered	Reference	Teaching Methodology
		Aromatic compounds-	Advanced	
1	Ι	aromaticity and	Organic	Chalk and
		Huckel's rule	Chemistry	board
			B.S Bahl and	
			Arun Bahl	
		Examples of benzenoid	Advanced	
2	Ι	and nonbenzenoid	Organic	Chalk and board
		compounds.	Chemistry	
		benzene, naphthalene,	B.S Bahl and	
		anthracene, pyridine and	Arun Bahl	
		quinoline, azulene and		
		ferrocene		

			Advanced	
3	Ι	Preparation, properties	Organic	Chalk and board
		and uses of naphthalene.	Chemistry	
			B.S Bahl and	
			Arun Bahl	
4	Ι	Heterocyclic	Advanced	Chalk and board
		compounds-preparation,	Organic	
		properties and uses of	Chemistry	
		furan, thiophene and	B.S Bahl and	
		pyrrole.	Arun Bahl	
5	Ι	Electrophilic	Advanced	Chalk and board
		substitution in benzene-	Organic	
		mechanism of nitration,	Chemistry	
		halogenation, alkylation,	B.S Bahl and	
		acylation and	Arun Bahl	
		sulphonation		
6	III	Polymer chemistry-	Fundamental	Chalk and board
		classification of	Concepts of	
		polymers	Applied	
			Chemistry	
			Dr. Jayashree	
			Ghosh	
7	III	Natural and synthetic	Fundamental	Chalk and board
		rubbers.	Concepts of	
			Applied	
			Chemistry	
			Dr. Jayashree	
			Ghosh	
8	III	Preparation and uses of	Fundamental	Chalk and board
		nylon 6, 6 and terylene	Concepts of	

			Applied	
			Chemistry	
			Dr. Jayashree	
			Ghosh	
9	III	Preparation and uses of	Fundamental	Chalk and board
		polyethylene	Concepts of	
			Applied	
			Chemistry	
			Dr. Jayashree	
			Ghosh	
10	III	Preparation and uses of	Fundamental	Chalk and board
		PVC	Concepts of	
			Applied	
			Chemistry	
			Dr. Jayashree	
			Ghosh	
11	III	Protein fibres – chemical	Fundamental	Chalk and board
		composition and	Concepts of	
		properties of wool and	Applied	
		silk	Chemistry	
			Dr. Jayashree	
			Ghosh	
12	V	Explosives – TNT ,	Textbook of	Chalk and board
		nitroglycerine and	Allied Chemistry	
		Dynamite	V.Veeraiyan and	
			A.N.S.	
			Vasudevan	
13	V	Industrial chemistry-fuel	Textbook of	Chalk and board
		gases - natural gas, water	Allied Chemistry	
		gas, semi water gas,		
		carburetted water gas,		

		oil gas and producer gas	V.Veeraiyan and	
			A.N.S.	
			Vasudevan	
14	V	Cement-composition,	Textbook of	Chalk and board
		setting of cement and	Allied Chemistry	
		uses,	V.Veeraiyan and	
			A.N.S.	
			Vasudevan	
15	V	Types of glasses.	Textbook of	Chalk and board
			Allied Chemistry	
			V.Veeraiyan and	
			A.N.S.	
			Vasudevan	

Week	Unit	Portions to be covered	Reference	Teaching Methodology
1	I	Acids and bases, proton	Inorganic	Chalk and board
1		transfer equilibria in	Chemistry	
		water – solvent leveling	D.F.Shrivers,	
		effects, aqua acids,	P.W.Atkins and	
		periodic trends in aqua		
			C.II. Langiolu	
		acids – simple oxo acids		
		– anhydrous oxides –		
		polyoxo compound		
		formation.		
2	Ι	Lewis acid - base	Inorganic	Chalk and board
		concepts, Hard and soft	Chemistry	
		acids and bases - group	D.F.Shrivers,	
		characteristics of Lewis	P.W.Atkins and	
		acids, Lux - Flood theory	C.H. Langford	
		of acids and bases and		
		Usanovich acids and		
		bases.		
3	Ι	Super acids and	Inorganic	Chalk and board
		superbases, nonaqueous	Chemistry	
		solvents, classification,	D.F.Shrivers,	
		protic and aprotic	P.W.Atkins and	
		solvents, heterogeneous	C.H. Langford	
		acids and bases -		
		symbiosis and proton		
		sponges.		

PCCHB19 – STRUCTURAL INORGANIC CHEMISTRY

4	II	Structure of complex	Inorganic	Chalk and board
		solids -layered structures,		
		conducting ionic solids,		
		graphite - solids held	Structure and	
		together by covalent	Reactivity	
		bonding, Diamond –		
		Madelung constants,		
		Imperfections in crystals		
		– stoichiometric defects -		
		Schottky, controlled		
		valency, F-center and		
		Frenkel defect.		
		NT	. .	
5	II	Non-stoichiometric	Inorganic	Chalk and board
		defects - metal excess	Chemistry,	
		defect, metal deficient	Principles,	
		defect, impurity defect.	Structure and	
		Band theory of solids,	Reactivity	
		Intrinsic and extrinsic	J.E. Huheey	
		semiconductors,		
		piezoelectric and		
		pyroelectric crystals,		
		Superconductivity –		
		Meissner effect, critical		
		temperature and Critical		
		magnetic Field.		
6	II	BCS theory, Type I and	Inorganic	Chalk and board
	11	Type II superconductor,	Chemistry	Chark and board
		ternary Oxides, structure	D.F.Shrivers,	
		-	P.W.Atkins and	
		of 123 oxides (YBa-Cu-		
		O) and applications of	C.H. Langford	

7	III	high temperature superconducting materials. Structure of simple solids, unit cell and crystal structures, close packing of spheres and	Inorganic Chemistry D.F.Shrivers, P.W.Atkins and	Chalk and board
		holes in closed packed structures.	C.H. Langford	
8	III	Structure of metals and alloys, non closed packed structures, atomic radii of metals, polytypism, polymorphism of metals.	Inorganic Chemistry D.F.Shrivers, P.W.Atkins and C.H. Langford	Chalk and board
9	III	Alloys - substitutional solid solutions, interstitial solid solutions of non metals , intermetallic compounds, characteristic and structure of ionic solids, binary phases (AX and AX ₂), ternary phases (ABO ₃ and AB ₂ O ₄).	Inorganic Chemistry D.F.Shrivers, P.W.Atkins and C.H. Langford	Chalk and board

10	IV	Structure and bonding I - polyacids - isopolyacids and heteropolyacids of molybdenum and tungsten, Dawson and Keggins structure of poly acids, heteropolyanions	Inorganic	Chalk and board
		and heteropoly blues.	-	~
11	IV	Inorganic polymers - Silicates, structures, properties, correlation and applications, molecular sieves, feldspar, zeolites and ultramarines and its application.	Inorganic Chemistry, Principles, Structure and Reactivity J.E. Huheey	Chalk and board
12	IV	$\begin{array}{llllllllllllllllllllllllllllllllllll$	Inorganic Chemistry, Principles, Structure and Reactivity J.E. Huheey	Chalk and board

13	V	Structure and Bonding II	Advanced	Chalk and board
		- boron hydrides,	Inorganic	
		introduction,	Chemistry	
		classification of boranes,	F.A. Cotton and	
		diborane, tetra borane,	G. Wilkinson	
		pentaborane, hexaborane		
		and decaborane,		
		polyhedral boranes -		
		Wade's rule - closo, nido		
		and arachno structures		
		and hydroboration.		
14	V	Carboranes - closo, nido	Advanced	Chalk and board
		and arachno structures of	Inorganic	
		carboranes,	Chemistry	
		metallocarboranes closo,	F.A. Cotton and	
		nido and arachno,	G. Wilkinson	
		structures of carboranes.		
15	V	Structure and bonding of	Advanced	Chalk and board
		boronitrides and metal	Inorganic	
		clusters- chemistry of	Chemistry	
		low molecularity metal	F.A. Cotton and	
		clusters (upto trinuclear	G. Wilkinson	
		metal clusters).		

EVEN SEMESTER

PCCHD19 – ORGANIC REACTIONS AND MECHANISMS

Week	Portions to be covered	Reference	Teaching Methodology
1	Unit I Oxidation by quinones, selenium dioxide, osmium tetroxide,	Reaction Mechanism in Organic Chemistry By S. M. Mukherji S. P. Singh	Chalk and Board
2	Unit I Oxidation by lead tetraacetate, formation of C-C bond in phenol coupling, acetylenic coupling.	Reactions, Rearrangements and Reagents By S. N. Sanyal	Chalk and Board
3	Unit I Oxidation by chromic acid (Jones reagent), chromium trioxide – pyridine (Sarett's reagent), DMSO- DCC (Pfitzer-Moffatt reagent).	Reaction Mechanism in Organic Chemistry By S. M. Mukherji S. P. Singh	Chalk and Board
4	Unit I Oppenauer oxidation, Dakin reaction and Swern oxidation.	Reactions, Rearrangements and Reagents By S. N. Sanyal	Chalk and Board
5	Unit III Wagner-Meerwein, Demjanov, Dienone – Phenol earrangement.	Advanced Organic Chemistry Reactions, Mechanisms and Structure By Jerry March	PPT

6	Unit III Favorski, Baeyer-Villiger, Wolf, rearrangements.	Reactions, Rearrangements and Reagents By S. N. Sanyal	PPT
7	Unit III Curtius, Lossen and Von-Richter rearrangements.	Reactions, Rearrangements and Reagents By S. N. Sanyal	РРТ
8	Unit III Schmidt rearrangement. Nitrenes – Singlet and triplet nitrenes. Methods of generating nitrenes and their reactions.	Advanced Organic Chemistry Reactions, Mechanisms and Structure By Jerry March	Chalk and Board
9	Unit IV Reaction mechanisms and applications of Michael addition, Skraup and Ullmann reactions.	Reactions, Rearrangements and Reagents By S. N. Sanyal	Chalk and Board
10	Unit IV Reaction mechanisms and applications of Hunsdicker, Nef and HVZ.	Reactions, Rearrangements and Reagents By S. N. Sanyal	Chalk and Board
11	Unit V Photochemical excitation - fate of the excited molecules - study of photo chemical reaction of ketone. Norrish type I and Norrish type II reaction.	Reaction Mechanism in Organic Chemistry By S. M. Mukherji S. P. Singh	Chalk and Board

12	Unit V Photocyclo addition – Paterno - Buchi reduction - photo cycloaddition of α - β unsaturated ketones- di-pi methane rearrangement.	Reaction Mechanism in Organic Chemistry By S. M. Mukherji S. P. Singh	Chalk and Board
13	Unit V Pericyclic reactions - classification, orbital symmetry - Woodward Hoffmann rules. Analysis of electrocyclic reaction -Types - 4n and 4n + 2 systems	Reaction Mechanism in Organic Chemistry By S. M. Mukherji S. P. Singh	Chalk and Board
14	Unit V Cyclo addition – Types – [2+2] and [4+2] cycloaddition reactions. Sigmatropic reactions- 1, n Hydrogen shift, Cope rearrangement and Claisen rearrangement.	Reaction Mechanism in Organic Chemistry By S. M. Mukherji S. P. Singh	Chalk and Board
15	Unit V Correlation diagrams for butadiene - cyclobutene system.	Reaction Mechanism in Organic Chemistry By S. M. Mukherji S. P. Singh	Chalk and Board

PCCHM15 – NATURAL PRODUCTS AND BIOORGANIC CHEMISTRY

Week	Unit	Portions to be covered	Reference	Teaching Methodology
		Nucleic acid and types	Enzyme	Methodology
1	v	rucicie della dila types	Chemistry	Chalk and
1	·		Hermann Dugas	board
			Tionnann D'agas	
2	V	Enzyme Chemistry- Enzyme mechanism of alpha chymotrypsin.	Enzyme Chemistry Hermann Dugas	Chalk and board
3	V	Wobbles Hypothesis	Enzyme	Chalk and board
			Chemistry	
			Hermann Dugas	
4	V			Chalk and board
		Coenzyme chemistry -	Enzyme	
		Prosthetic groups and	Chemistry	
		apo enzymes	Hermann Dugas	
5	V	Gene transcription and	Enzyme	Chalk and board
		translation	Chemistry	
			Hermann Dugas	
6	V	Coenzyme thiamine	Enzyme	Chalk and board
		pyrophosphate	Chemistry	
			Hermann Dugas	

7	V	Coenzyme thiamine	Enzyme	Chalk and board
		pyrophosphate.	Chemistry	
			Hermann Dugas	
8	V	Enzymes in synthetic	Enzyme	Chalk and board
		organic chemistry.	Chemistry	
			Hermann Dugas	
9	V	Structure, biological	Enzyme	Chalk and board
		function and mechanism	Chemistry	
		of reactions catalysed by	Hermann Dugas	
		pyridoxal phosphate		
10	V	Structure, biological	Enzyme	Chalk and board
		function and mechanism	Chemistry	
		of reactions catalysed by	Hermann Dugas	
		coenzyme A		
11	V	Structure, biological	Enzyme	Chalk and board
		function and mechanism	Chemistry	
		of reactions catalysed	Hermann Dugas	
		thiamine pyrophosphate.		
12	V	Structure and Biological	Enzyme	Chalk and board
		functions of NADP	Chemistry	
			Hermann Dugas	
13	V	Structure and Biological	Enzyme	Chalk and board
		functions FAD.	Chemistry	
			Hermann Dugas	
14	V	Structure and Biological	Enzyme	Chalk and board
		functions of lipoic acid.	Chemistry	
			Hermann Dugas	
15	V	Structure and Biological	Enzyme	Chalk and board
		functions Vitamin B ₁₂ .	Chemistry	

r			
		Hermann Dugas	

USCHB416 - MEDICINAL CHEMISTRY

Week	Unit	Portions to be covered	Reference	Teaching Methodology
1	Ι	First Aid - important rules of first aid, first aid box, cuts and abrasion.	A Textbook of Pharmaceutical Chemistry Dr. Jayashree Ghosh	Chalk and board
2	I	Bruises, bleeding, fractures, burns and poisonous bites.	A Textbook of Pharmaceutical Chemistry Dr. Jayashree Ghosh	Chalk and board
3	Ι	Detection of hallucinogens, poisons and antidotes for poisoning.	A Textbook of Pharmaceutical Chemistry Dr. Jayashree Ghosh	Chalk and board
4	II	Common Medicines - analgesics, antipyretics and anti-inflammatory agents.	Fundamental Concepts of Applied Chemistry Dr. Jayashree Ghosh	Chalk and board

5	II	Antiseptics, antibiotics and antidepressants.	Fundamental Concepts of Applied Chemistry Dr. Jayashree Ghosh	Chalk and board
6	II	Disinfectants, sedatives, anesthetics – definition, examples, uses and side effects.	Fundamental Concepts of Applied Chemistry Dr. Jayashree Ghosh	Chalk and board
7	III	Indian medicinal plants - medicinal properties of neem, keezhanelli, sembaruthy, thulsi and thoothuvalai.	Indian Medicinal plants An Illustrated Dictionary C. P. Khare	Chalk and board
8	III	Nithya kalyani, rose, turmeric, garlic, senavu, nerunji and curry leaves	Indian Medicinal plants An Illustrated Dictionary C. P. Khare	Chalk and board
9	III	Perandai, thipili, vallarai, karunjeeragam and flax seeds.	Indian Medicinal plants An Illustrated Dictionary C. P. Khare	Chalk and board

10	IV	Medicaments in formulations - aerosol inhalations, capsules, creams and emulsions.	Practical Pharmaceutical Chemistry A.H.Beckett and J.B.Stenlake	Chalk and board
11	IV	Eye drops, injections, ointments and suppositories.	Practical Pharmaceutical Chemistry A.H.Beckett and J.B.Stenlake	Chalk and board
12	IV	Tablets, tonic, syrup and hydrogels – definition, examples and uses.	Practical Pharmaceutical Chemistry A.H.Beckett and J.B.Stenlake	Chalk and board
13	V	Medical applications of polymers – biomaterials - definition and characteristics, ceramic implants and metallic implants.	Biomaterials Sujatha V. Bhat	Chalk and board
14	V	Biomedical applications of polyurethane, polydimethylsiloxane, polyalkylsulphone and polymethylmethacrylate.	Biomaterials Sujatha V. Bhat	Chalk and board
15	V	Acrylic hydro gels, poly vinyl chloride, polypropylene, polyethylene and polylactic acid.	Biomaterials Sujatha V. Bhat	Chalk and board

USCHD616 – SBE: FOOD CHEMISTRY

Week	Unit	Portions to be covered	Reference	Teaching methodolo gy
1	Ι	Food and food adulteration, food types, advantages and disadvantages.	Food Science By B.Srilakshmi	Chalk and board
2	Ι	Food adulteration- adulteration in food grains, milk, butter, ghee, ice creams and cakes, pepper, turmeric,	Food Science By B.Srilakshmi	Chalk and board
3	Ι	Food adulteration in chilli powder, edible oils, coffee and tea powder, fruits and vegetables. Detection of adulterants by simple analytical techniques.	Food Science By B.Srilakshmi	Chalk and board
4	Π	Food additives - definition, structure , advantages and disadvantages of artificial sweeteners -saccharin, cyclamate and aspartate	Food Chemistry By Lillian Hoagland Meyer	PPT

5	II	Food flavours-esters, aldehydes and heterocyclic compounds Food colours, emulsifying agents, preservatives and leavening agents- baking powder, baking soda and yeast	Food Chemistry By Lillian Hoagland Meyer	PPT
6	II	Antioxidants- propyl gallate, butylated hydroxyl anisole and butylated hydroxyl toluene.	Food Chemistry By Lillian Hoagland Meyer	Chalk and board
7	III	Food poison and beverages - food poisons- pesticides and chemical poisons.	Food Chemistry By Seema Yadav	Chalk and board
8	III	First aid for poison consumed victims. Beverages - soft drinks- soda, carbonated drinks, fruit juices,	Food Chemistry By Seema Yadav	Chalk and board
9	III	Alcoholic beverages- examples and composition. Addiction to alcohol- diseases of liver. Deaddiction measures.	Food Science By B.Srilakshmi	Chalk and board
10	IV	Edible oils - fats, oils, sources of oils, saturated and unsaturated fats, importance of MUFA and PUFA,	Food Science By B.Srilakshmi	Chalk and board

11	IV	Iodine value, RM value, harmful effects of trans fat, saponification values and their significance.	Food Science By B.Srilakshmi	Chalk and board
12	IV	Rancidity- types, hydrolytic and oxidative, test for rancidity, prevention of rancidity.	Food Science By B.Srilakshmi	Chalk and board
13	V	Vegetables and Fruits - classification, composition, nutritive value of green leafy vegetables, roots and tubers, other vegetables.	Food Science By B.Srilakshmi	Chalk and board
14	V	Pigments- water insoluble and water soluble pigments. Vegetable cookery- preparation, changes during cooking, loss of nutrients during cooking.	Food Science By B.Srilakshmi	Chalk and board
15	V	Fruits- classification, composition, ripening of fruits, chemical fruit ripening, storage of fruits	Food Science By B.Srilakshmi	Chalk and board

Auxilium College (Autonomous), Gandhi Nagar, Vellore – 632 006.

Lesson Plan for the year 2019 -2020

ODD SEMESTER

UCCHA19 – General Chemistry - I

Week	Unit	Portions to be covered	Reference	Platform (LMS)
1	Ι	Periodicity of properties – definition.	R.D.Madan Modern Inorganic Chemistry	Chalk and Board
2	I	Factors affecting and periodicity of Atomic radii.	R.D.Madan Modern Inorganic Chemistry	Chalk andBoard
3	I	Factors affecting and periodicity of ionic radii	R.D.Madan Modern Inorganic Chemistry	Chalk andBoard
4	Ι	Factors affecting and periodicity of and ionization potential.	R.D.Madan Modern Inorganic Chemistry	Chalk andBoard
5	Ι	Factors affecting and periodicity of electron affinity.	R.D.Madan Modern Inorganic Chemistry	Chalk andBoard
6	Ι	Factors affecting and periodicity of electronegativity.	R.D.Madan Modern Inorganic Chemistry	Chalk andBoard
7	Ι	Determination of electronegativity – Pauling's scale and Mulliken's scale.	R.D.Madan Modern Inorganic Chemistry	Chalk andBoard

8	III		Arun Bahl, Advanced Organic Chemistry	Chalk andBoard
9	III	complex organic compounds-alkenes, alkynes. IUPAC System nomenclature for complex organic compounds - alkyl	B.S Bahl and Arun Bahl, Advanced Organic Chemistry	Chalk andBoard
10	III	Compounds having functional groups - alcohols, ethers, aldehydes.	B.S Bahl and Arun Bahl, Advanced Organic Chemistry	Chalk andBoard
11	III	Compounds having functional groups - ketones, carboxylic acids, esters, nitro compounds.	B.S Bahl and Arun Bahl, Advanced Organic Chemistry	Chalk andBoard
12	III	Compounds having functional groups - aromatic compounds and substituted aromatic compounds, poly functional and heterocyclic compounds.bicyclic	B.S Bahl and Arun Bahl, Advanced Organic Chemistry	Chalk andBoard

III - B.Sc. Chemistry – Semester V

Week	Unit	Portions to be covered	Reference	Platform
vv eek	Umt	Fortions to be covered	Kelerence	(LMS)
1	Ι	Objectives and characteristics of small-scale industries-Types of SSI-Roles of SSI in Indian economy-problems of SSI –	Dr. V. Balu, Entrepreneurship and Small Business Promotion.	Chalk and Board
2	Ι	Steps in starting SSI-Laws for SSI – Finance Management-Quality control-definition and advantages-	Dr. V. Balu, Entrepreneurship and Small Business Promotion.	Chalk and Board
3	Ι	Marketing and branding- Advertising definition, objectives, advertising media.	Dr. V. Balu, Entrepreneurship and Small Business Promotion,	Chalk and Board
4	II	Soaps – definition- main fatty and non- fatty raw materials -Types of soaps-manufacture of laundry soap and bathing soap.	B.K.Sharma, Industrial Chemistry	Chalk and Board
5	II	Mechanism of cleansing action of soap. Composition, preparation and advantages of herbal soaps.	B.K.Sharma, Industrial Chemistry	Chalk and Board
6	II	Detergents-Classification of surfactive agents- manufacture of detergents. Shampoo-Composition and manufacture of egg and herbal shampoo.	B.K.Sharma, Industrial Chemistry	Chalk and Board
7	III	Cosmetics –definition, kinds of cosmetics.	B.K.Sharma, Industrial Chemistry	Chalk and Board
8	III	Preparation of face powder, face cream and lipstick.	B.K.Sharma, Industrial Chemistry	Chalk and Board
9	III	Perfumes- definition, essential ingredients in perfumes, classification of essential oils- preparation of perfumes.	B.K.Sharma,	Chalk and Board
10	IV	Camphor – production, biosynthesis and applications. Bleaching powder - preparation, properties and uses.	B.K.Sharma, Industrial Chemistry	Chalk and Board
11	IV	Biogas- composition, production and uses. Handmade paper from bagasse- composition of bagasse and uses.	B.K.Sharma, Industrial Chemistry	Chalk and Board

SBE: USCHC516- SMALL SCALE CHEMISTRY

12	IV	Asofoetida - composition, cultivation,	B.K.Sharma,	Chalk and
		manufactures and uses. Composition and	Industrial	Board
		manufacture of safety matches and agarbattis.	Chemistry	
13	V	Recycling of synthetic organic polymers –	B.K.Sharma,	Chalk and
		applications of PET, PVC, HDPE, and	Industrial	Board
		polystyrene.	Chemistry	
14	V	Reverse osmosis of water - production and	B.K.Sharma,	Chalk and
		applications. Coconut oil - manufacture by dry	Industrial	Board
		and wet processes and uses.	Chemistry	
15	V	Vulcanization of rubber, making an eraser.	B.K.Sharma,	Chalk and
		Pencils - forms of graphite, adhesion and	Industrial	Board
		lengthwise graphitization method and uses.	Chemistry	

III - B.Sc./B.A/B.Com/BBA – Semester V

Week	Unit	Portions to be covered	Reference	Platform
				(LMS)
1	Ι	Nutrition and Health - concept, classification of foods. Nutrients - macro and micro nutrients.	Shrinandan Bansal, Food and Nutrition, 2nd Edition, AI.T.B.S Publishers, India, 2010.	Chalk and Board
2	Ι	Carbohydrates - sources, classification, functions, deficiency diseases, energy requirements, blood sugar level.	,	Chalk and Board
3	Ι	Carbohydrates metabolism - Glycolysis, Glyconeogenesis, Glycogenolysis.	AmbigaShanmuga m, Fundamentals of Biochemistry for Medical Students, 8th Edition, 2016.	Chalk and Board
4	II	Proteins-sources, classification, functions.	Shrinandan Bansal, Food and Nutrition, 2nd Edition, AI.T.B.S Publishers, India, 2010.	Chalk and Board
5	Π	Proteins - deficiency diseases, energy requirements and metabolism.	Shrinandan Bansal, Food and Nutrition, 2nd Edition, AI.T.B.S Publishers, India, 2010.	Chalk and Board
6	Π	Fats - Sources, classification, functions, deficiency diseases, energy requirements and metabolism.	Shrinandan Bansal, Food and Nutrition, 2nd Edition, AI.T.B.S Publishers, India, 2010.	Chalk and Board
7	III	Vitamins– classification, difference between fat soluble and water soluble vitamins. Fat soluble vitamins (A, D, E and K),	-	Chalk and Board

NME: UGCHA519- FOOD AND NUTRITION CHEMISTRY

8	III	Water soluble vitamins (Thiamine, Riboflavin, Niacin Pyridoxine, Pantothenic acid,) sources, functions, deficiency diseases and daily requirements.	-	Chalk and Board
9	III	5	Shrinandan Bansal, Food and Nutrition, 2nd Edition, AI.T.B.S Publishers, India, 2010.	Chalk and Board
10	IV	Minerals – classification, major elements (Ca, P, Na, K, Fe, Mg, I and F)	Shrinandan Bansal, Food and Nutrition, 2nd Edition, AI.T.B.S Publishers, India, 2010.	Chalk and Board
11	IV	Trace elements (Zn, Cu, Co, Se, Mo) - sources, functions, deficiency diseases and recommended requirements.		Chalk and Board
12	IV	Balanced diet - Recommended diet for adult - Indian men and women. Diet in pregnancy and lactation.	Shrinandan Bansal, Food and Nutrition, 2nd Edition, AI.T.B.S Publishers, India, 2010.	Chalk and Board
13	V	Vegetables – Nutritive value of green leafy vegetables, roots and tubers. Vegetable cookery (preliminary preparation, changes during cooking, loss of nutrients during cooking).	B.Srilakshmi, Food Sciences, 5th	Chalk and Board
14	V	Fruits – Nutritive value of fruits, pigments, water, cellulose and pectic substances, flavour constituents, polyphenols, bitterness in fruits.	B.Srilakshmi, Food Sciences, 5th Edition, New Age International Publishers, 2010.	Chalk and Board
15	V	Ripening of fruits – chemical ripening. Storage of fruits. Antioxidants - antioxidant properties of vegetables and fruits.		Chalk and Board

II M.Sc. Chemistry – Semester III

PCCHK15 -MOLECULA	R SPECTROSCOPY
-------------------	-----------------------

Week Unit		Portions to be covered	Reference	Platform
				(LMS)
1	Ι	Ultra violet spectroscopy - types of electronic transitions – chromophore and auxochrome - factors influencing positions and intensity of absorption bands -	Dr.H.Kaur, Spectroscopy William Kemp, Organic Spectroscopy R.M. Silverstein, G.d. Bassler and Monsu, Spectrometric Identification of Organic Compounds	Chalk and Board
2	Ι	Absorption spectra of dienes, polyenes and alpha, beta unsaturated carbonyl compounds-Woodward Fischer rule –	Dr.H.Kaur, Spectroscopy William Kemp, Organic Spectroscopy R.M. Silverstein, G.d. Bassler and Monsu, Spectrometric Identification of Organic Compounds	Chalk and Board
3	Ι	The effect of steric hindrance to coplanarity – charge transfer spectral absorption.	Dr.H.Kaur, Spectroscopy William Kemp, Organic Spectroscopy R.M. Silverstein, G.d. Bassler and Monsu, Spectrometric Identification of Organic Compounds	Chalk and Board
4	Ι	IR Spectroscopy - vibrational frequencies and factors affecting them - identification of functional groups- intra and inter molecular hydrogen bonding -	Dr.H.Kaur, Spectroscopy William Kemp, Organic Spectroscopy R.M. Silverstein, G.d. Bassler and Monsu, Spectrometric Identification of Organic Compounds	Chalk and Board
5	Ι	Applications of finger print region – far IR region	Dr.H.Kaur, Spectroscopy William Kemp, Organic Spectroscopy	Chalk and Board

			R.M. Silverstein, G.d. Bassler and Monsu,	
			Spectrometric Identification of Organic Compounds	
6	Ι	Metal ligand stretching vibrations for metal carbonyls, sulphates, cyanides, nitro and nitrito complexes.	Dr.H.Kaur, Spectroscopy William Kemp, Organic Spectroscopy	Chalk and Board
			R.M. Silverstein, G.d. Bassler and Monsu, Spectrometric Identification of Organic Compounds	
7	Π	Mass spectroscopy – Principles - measurement techniques - (E ₁ , C ₁ , ED, FAB, SIMS)	Spectroscopy William Kemp, Organic Spectroscopy R.M. Silverstein, G.d.	Chalk and Board
			Bassler and Monsu, Spectrometric Identification of Organic Compounds	
8	II	Presentation of spectral data - molecular ions, isotope ions - Nitrogen rule and ring rule, fragment ions of odd and even electron types	Dr.H.Kaur, Spectroscopy William Kemp, Organic Spectroscopy	Chalk and Board
			R.M. Silverstein, G.d. Bassler and Monsu, Spectrometric Identification of Organic Compounds	
9	II	Rearrangement ions-factors affecting cleavage patterns – simple and multi center fragmentation	Dr.H.Kaur, Spectroscopy William Kemp,	Chalk and Board
			Organic Spectroscopy R.M. Silverstein, G.d. Bassler and Monsu, Spectrometric Identification of Organic Compounds	
10	II	McLafferty rearrangement -Mass spectra of phenols, aldehyde, lactones, nitro compounds,	Dr.H.Kaur, Spectroscopy William Kemp,	Chalk and Board
			Organic Spectroscopy R.M. Silverstein, G.d. Bassler and Monsu, Spectrometric Identification of Organic Compounds	

11	II	McLafferty rearrangement -Mass spectra of	Dr.H.Kaur,	Chalk and
		esters, acetals and ketals, hetero aromatic	Spectroscopy	Board
		compounds and sulphides.	William Kemp,	
			Organic Spectroscopy	
			R.M. Silverstein, G.d.	
			Bassler and Monsu,	
			Spectrometric	
			Identification of Organic	
12	II	Principle and introduction to GC-MS.	Compounds Dr.H.Kaur,	Chalk and
12	11	Finciple and introduction to GC-MS.	Spectroscopy	Board
			William Kemp,	Боаги
			Organic Spectroscopy	
			R.M. Silverstein, G.d.	
			Bassler and Monsu,	
			Spectrometric	
			Identification of	
			Organic Compounds	
13	III	NMR spectroscopy – Introduction – nuclear	÷ .	Chalk and
		spin – Larmor frequency – relaxation process –	Spectroscopy	Board
		chemical shift – shielding constants –	William Kemp,	Dourd
			Organic Spectroscopy	
			R.M. Silverstein, G.d.	
			Bassler and Monsu,	
			Spectrometric	
			Identification of	
			Organic Compounds	
14	III	Ring current and aromaticity – shifts for 1H and		Chalk and
		13C, spin spin interaction – nuclear magnetic	Spectroscopy	Board
		double resonance – nuclear overhauser effect.	William Kemp,	
			Organic Spectroscopy	
			R.M. Silverstein, G.d.	
			Bassler and Monsu,	
			Spectrometric	
			Identification of	
1 -	***		Organic Compounds	
15	III	Application of ¹ H NMR, ¹³ C NMR, ³¹ P NMR, ¹⁹ F NMR and their applications to inorganic		Chalk and
		systems.	1 12	Board
			William Kemp,	
			Organic Spectroscopy P. M. Silverstein, G. d	
			R.M. Silverstein, G.d. Bassler and Monsu,	
			Spectrometric	
			Identification of	
			Organic Compounds	
			organic Compounds	

Auxilium College (Autonomous), Gandhi Nagar, Vellore – 632006.

Lesson Plan for the year 2019 – 2020

EVEN SEMESTER – II/IV

PCCHD19 – ORGANIC REACTIONS AND MECHANISMS

Week / Date	No of Hours	Units	Topics	Teaching Platform	Learning Resources
Ι	1	2	Catalytic reduction – reduction by metals (Cu, Pd, Ni),	Chalk and Board	S.M. Mukherji and S.P. Singh, Organic Reaction Mechanism
II	1	2	Wolf- Kishner reduction and its modification, Clemmensen reduction,	Chalk andBoard	S.M. Mukherji and S.P. Singh, Organic Reaction Mechanism
III	1	2	Birch, MPV Reduction.	Chalk andBoard	S.M. Mukherji and S.P. Singh, Organic Reaction Mechanism
IV	1	2	Reduction with LiAlH ₄ , NaBH ₄ ,	Chalk andBoard	S.M. Mukherji and S.P. Singh, Organic Reaction Mechanism
V	1	2	Reduction with tritertiary butoxyaluminium hydride, sodium cyanoborohydride,	Chalk andBoard	S.M. Mukherji and S.P. Singh, Organic Reaction Mechanism
VI	1	2	selectivity in reduction of 4-t- butylcyclohexanone using selected hydrides.	Chalk andBoard	S.M. Mukherji and S.P. Singh, Organic Reaction Mechanism
VII	1	4	Reaction mechanism and applications – Barton.	Chalk andBoard	Sanyal S.N.Bharathi Bhawan, Reactions, Rearrangements and Reagents
VIII	1	4	Reaction mechanism and applications – Simmon-Smith	Chalk andBoard	Sanyal S.N.Bharathi Bhawan, Reactions, Rearrangements and Reagents
IX	1	4	Reaction mechanism and applications – Mannich	Chalk andBoard	Sanyal S.N.Bharathi Bhawan, Reactions, Rearrangements and Reagents
X	1	4	Reaction mechanism and applications – Stobbe	Chalk andBoard	Sanyal S.N.Bharathi Bhawan, Reactions, Rearrangements and Reagents
XI	1	4	Reaction mechanism and applications – Darzen	Chalk andBoard	Sanyal S.N.Bharathi Bhawan, Reactions, Rearrangements and Reagents
XII	1	4	Reaction mechanism and applications – Chichibabin	Chalk andBoard	Sanyal S.N.Bharathi Bhawan, Reactions, Rearrangements and Reagents

II M.Sc. Chemistry Sem IV PCCHM15 – NATURAL PRODUCTS AND BIOORGANIC CHEMISTRY

Week / Date	No of Hours	Units	Topics	Teaching Platform	Learning Resources
I	2	1	Synthesis and reactions of Imidazole, Oxazole, thiazole, flavones,	Chalk and Board	I.L. Finar, Organic Chemistry.
II	2	1	Synthesis and reactions of isoflavones, anthocyanins. and	Chalk andBoard	I.L. Finar, Organic Chemistry.
III	2	1	Synthesis and reactions of pyrimidines (cytosine and uracil only)	Chalk andBoard	I.L. Finar, Organic Chemistry.
IV	2	1	Synthesis and reactions of purines (adenines, guanine only)	Chalk andBoard	I.L. Finar, Organic Chemistry.
V	2	1	Synthesis of Vitamin A (Reformatsky and Wittig reaction methods only)	Chalk andBoard	I.L. Finar, Organic Chemistry.
VI	2	1	Total synthesis of Morphine, Quinine and Papaverine.	Chalk andBoard	I.L. Finar, Organic Chemistry.
VII	2	3	Definition, Classification, Properties- Saponification, rancidity, oxidation, hydrogenation,	Chalk andBoard	U.Satyanarayana and Chakrapani, Fundamentals of Biochemistry.
VIII	2	3	Definition, Classification, Properties- halogenations reactions – Iodine number Saponification number, Acetyl number-	Chalk andBoard	U.Satyanarayana and Chakrapani, Fundamentals of Biochemistry.
IX	2	3	Metabolism of lipids-Beta oxidation of fatty acids	Chalk andBoard	U.Satyanarayana and Chakrapani, Fundamentals of Biochemistry.
Х	2	3	Biosynthesis of fatty acids	Chalk andBoard	U.Satyanarayana and Chakrapani, Fundamentals of Biochemistry.
XI	2	3	Metabolism of cholesterol	Chalk andBoard	U.Satyanarayana and Chakrapani, Fundamentals of Biochemistry.
XII	2	3	Conversion of Cholesterol to Progesterone, Oestrone and Testosterone.	Chalk andBoard	U.Satyanarayana and Chakrapani, Fundamentals of Biochemistry.

III - B.Sc./B.A/B.Com/BBA – Semester VI

Week	Unit	Portions to be covered	Reference	Platform	
				(LMS)	
1	Ι	Nutrition and Health - concept, classification of foods. Nutrients - macro and micro nutrients.	Shrinandan Bansal, Food and Nutrition, 2nd Edition, AI.T.B.S Publishers, India, 2010.	Chalk and Board	
2	Ι	Carbohydrates - sources, classification, functions, deficiency diseases, energy requirements, blood sugar level.		Chalk and Board	
3	I	Carbohydrates metabolism - Glycolysis, Glyconeogenesis, Glycogenolysis.	AmbigaShanmuga m, Fundamentals of Biochemistry for Medical Students, 8th Edition, 2016.	Chalk and Board	
4	II	Proteins-sources, classification, functions.	Shrinandan Bansal, Food and Nutrition, 2nd Edition, AI.T.B.S Publishers, India, 2010.	Chalk and Board	
5	Π	requirements and metabolism.	Shrinandan Bansal, Food and Nutrition, 2nd Edition, AI.T.B.S Publishers, India, 2010.	Chalk and Board	
6	Π	Fats - Sources, classification, functions, deficiency diseases, energy requirements and metabolism.	Shrinandan Bansal, Food and Nutrition, 2nd Edition, AI.T.B.S Publishers, India, 2010.	Chalk and Board	
7	III	Vitamins– classification, difference between fat soluble and water soluble vitamins. Fat soluble vitamins (A, D, E and K),		Chalk and Board	

NME: UGCHA619- FOOD AND NUTRITION CHEMISTRY

8	III	Water soluble vitamins (Thiamine, Riboflavin, Niacin Pyridoxine, Pantothenic acid,) sources, functions, deficiency diseases and daily requirements.	-	Chalk and Board
9	III	5	Shrinandan Bansal, Food and Nutrition, 2nd Edition, AI.T.B.S Publishers, India, 2010.	Chalk and Board
10	IV	Minerals – classification, major elements (Ca, P, Na, K, Fe, Mg, I and F)	Shrinandan Bansal, Food and Nutrition, 2nd Edition, AI.T.B.S Publishers, India, 2010.	Chalk and Board
11	IV	Trace elements (Zn, Cu, Co, Se, Mo) - sources, functions, deficiency diseases and recommended requirements.		Chalk and Board
12	IV	Balanced diet - Recommended diet for adult - Indian men and women. Diet in pregnancy and lactation.	Shrinandan Bansal, Food and Nutrition, 2nd Edition, AI.T.B.S Publishers, India, 2010.	Chalk and Board
13	V	Vegetables – Nutritive value of green leafy vegetables, roots and tubers. Vegetable cookery (preliminary preparation, changes during cooking, loss of nutrients during cooking).	B.Srilakshmi, Food Sciences, 5th	Chalk and Board
14	V	Fruits – Nutritive value of fruits, pigments, water, cellulose and pectic substances, flavour constituents, polyphenols, bitterness in fruits.	B.Srilakshmi, Food Sciences, 5th Edition, New Age International Publishers, 2010.	Chalk and Board
15	V	Ripening of fruits – chemical ripening. Storage of fruits. Antioxidants - antioxidant properties of vegetables and fruits.		Chalk and Board

4	Unit II: p block elements -Boron family-comparative study of elements and compounds- oxides, hydroxides, halides and hydrides.	 Modern Inorganic Chemistry - R.D.Madan Textbook of Inorganic Chemistry- P.L Soni
5	Unit II: Preparation, properties, uses and structures of LiAlH ₄ , NaBH ₄ and Borozole.	 Modern Inorganic Chemistry - R.D.Madan Textbook of Inorganic Chemistry- P.L Soni
6	Unit II: Preparation, properties, uses and structures of Diborane.	 Modern Inorganic Chemistry - R.D.Madan Textbook of Inorganic Chemistry- P.L Soni
7	Unit II: Carbon family - comparative study of elements and compounds- hydrides, oxides and halides.	 Modern Inorganic Chemistry - R.D.Madan Textbook of Inorganic Chemistry- P.L Soni
8	Unit II: Classification of silicates, chemistry of silicones and their applications.	 Modern Inorganic Chemistry - R.D.Madan Textbook of Inorganic Chemistry- P.L Soni
9	Unit IV: Aliphatic Nucleophilic Substitution - mechanism of S_N1 and S_N2 reactions	 Advanced Organic Chemistry- B.SBahl, and Arun Bahl Modern Organic Chemistry-M.K Jain and S.C Sharma
10	Unit IV: Mechanism of S_N i reactions. Effect of structure of substrate, solvent, nucleophile and the leaving group	 Advanced Organic Chemistry- B.SBahl, and Arun Bahl Modern Organic Chemistry-M.K Jain and S.C Sharma
11	Unit IV: Aromatic nucleophilic substitution - benzyneand intermediate complex mechanism	 Advanced Organic Chemistry- B.SBahl, and Arun Bahl Modern Organic Chemistry-M.K Jain and S.C Sharma
12	Unit IV: Effect of substituents on reactivity,Orientation and reactivity in substituted benzenes	 Advanced Organic Chemistry- B.SBahl, and Arun Bahl Modern Organic Chemistry-M.K Jain and S.C Sharma
13	Unit IV: Aromatic electrophilic substitution reaction in benzene and substituted benzenes-nitration and halogenation	 Advanced Organic Chemistry- B.SBahl, and Arun Bahl Modern Organic Chemistry-M.K

		Jain and S.C Sharma
14	Unit IV: Sulphonation, Friedel-Craft's acylation	Advanced Organic Chemistry-
	reaction mechanism	B.SBahl, and Arun Bahl
		 Modern Organic Chemistry-M.K
		Jain and S.C Sharma
15	Unit IV:	Advanced Organic Chemistry-
	Friedel-Craft's alkylation reaction mechanism	B.SBahl, and Arun Bahl
		Modern Organic Chemistry-M.K
		Jain and S.C Sharma

Auxilium College (Autonomous), Gandhi Nagar, Vellore - 632 006.

Programme	M.Sc. Chemistry
Programme Code	P14
Semester	Ι
Course	Stereochemistry and conformational analysis
Course Code	PCCHA19
Hours	5
Credits	5
Total Hours	75
Max Marks	100
Course Instructor/ Coordinator	Ms. Revathy T

Lesson Plan for the year 2019 - 2020

Week	Portions to be covered	Reference	
1	Unit 1: Chirality and optical activity - symmetry elements, asymmetric and dissymmetric molecule. Projection formula - Sawhorse, Newmann and Fischer projections and its interconversions.	 Advanced Organic Stereochemistry by N.Tewari Stereochemistry – Conformation and Mechanism by P.S.Kalsi 	
2	Unit 1: Nomenclature - Absolute configuration - R/S and D/L, Relative configurations - threo/erythro and syn/anti. Dissymmetry of allenes, biphenyls - atropisomerism, spiro compounds, transcyclooctene, cyclononene and molecules with helical structures.	 Advanced Organic Stereochemistry byN.Tewari Stereochemistry – Conformation and Mechanism by P.S.Kalsi 	
3	Unit 1: Stereo specific and stereo selective reactions - definition and examples. Asymmetric synthesis -	 Advanced Organic Stereochemistry byN.Tewari Stereochemistry – 	

	Cram's rule. Geometrical isomerism - E/Z nomenclature of olefins, Geometrical and optical isomerism of disubstituted cyclopropane, cyclobutane and cyclopentanes.	Conformation and Mechanism by P.S.Kalsi
4	Unit 2: Conformational analysis of di-substituted cyclohexanes and their stereo chemical features - Geometric and optical isomerism of these derivatives.Conformation and reactivity of cyclohexene - Allylic 1,2 and 1,3 strain and related compound alkyldiene cyclohexane.	 Advanced Organic Stereochemistry by N.Tewari Stereochemistry – Conformation and Mechanism byP.S.Kalsi Stereochemistry of Organic CompoundsbyD. Nasipuri
5	Unit 2: Conformation of cyclohexanone-2-alkyl and 3-alkyl ketone effect and reactivity of cyclohexanone in comparison with cyclopentanones. Conformations of six membered rings containing hetero atoms.	 Stereochemistry – Conformation and Mechanism by P.S.Kalsi Stereochemistry of Organic Compoundsby D. Nasipuri Stereochemistry of Carbon Compoundsby Ernest L. Eliel
6	Unit 2: Conformation and stereochemistry of cis and trans decalin and 9-methyl decalin.Quantitative correlation between conformation and reactivity - Curtin-Hammett principle.	 Stereochemistry – Conformation and Mechanism byP.S.Kalsi Stereochemistry of Organic CompoundsbyD. Nasipuri Stereochemistry of Carbon Compounds by Ernest L. Eliel
7	Unit 3: $S_N 2$ reaction - kinetics, mechanism and factors influencing the reaction. $S_N 1$ reaction - kinetics, mechanism, factors influencing the reactions, Rearrangement reaction.	 Stereochemistry – Conformation and Mechanismby P.S.Kalsi Stereochemistry of Carbon Compounds by Ernest L. Eliel
8	Unit 3: Mixed S_N1 and S_N2 reactions – competition between S_N1 and S_N2 mechanism.Substitution by ambident nucleophiles, substitution at allylic, vinylic, benzylic and aryl halides	 Stereochemistry – Conformation and Mechanism by P.S.Kalsi Stereochemistry of Organic CompoundsbyD. Nasipuri
9	Unit 3: SET (single electron transfer)- Mechanism - Neighbouring group participation – introduction of an acyclic open chain system, Π systems of aromatic rings, cyclic system, double bond and σ bond.	 Stereochemistry – Conformation and Mechanism by P.S.Kalsi Stereochemistry of Organic Compoundsby D. Nasipuri
10	Unit 4: E ₁ , E ₂ , E ₁ CB reaction – kinetics, mechanism and evidences.E ₁ , E ₂ and E ₁ CB variables- mechanistic spectrum, competition between elimination and substitution.	 Stereochemistry – Conformation and Mechanism byP.S.Kalsi Stereochemistry of Organic Compoundsby D. Nasipuri

11	Unit 4: Stereochemistry of E_2 - syn and anti elimination reaction, orientation of the double bond.Regiochemistry of E_1 , E_2 and E_1CB reactions with examples.	 Stereochemistry – Conformation and Mechanism by P.S.Kalsi Stereochemistry of Organic
12	Will examples.Unit 4:Pyrolytic eliminations - acyclic and alicyclicsystems, Molecular rearrangements duringelimination.Grob's fragmentations - Incorporation offragmentation - Mechanism of fragmentation -Mechanism allied to E1 and E2 elimination.	 CompoundsbyD. Nasipuri Stereochemistry – Conformation and Mechanism by P.S.Kalsi Stereochemistry of Organic CompoundsbyD. Nasipuri
13	Unit 5: Optical Rotatory Dispersion and Circular Dichroism- terminology- optical rotation, circular birefringence, circular dichroism and cotton effect.Plain curves – Application of plain curves – determination of structure, configuration, conformation and optical activity.	 Stereochemistry of Carbon Compounds by Ernest L. Eliel Stereochemistry of Organic CompoundsbyD. Nasipuri
14	Unit 5: Rotatory dispersion of ketones - structure, configuration, conformation of unsaturated ketones. Emperical and semiempirical rules- The Axial haloketone rule	 Stereochemistry of Carbon Compounds by Ernest L. Eliel Stereochemistry of Organic CompoundsbyD. Nasipuri
15	Unit 5: Octant rule (Configuration and Conformation), Absolute configuration and ketal formation.	 Stereochemistry of Carbon Compounds by Ernest L. Eliel Stereochemistry of Organic Compoundsby D. Nasipuri

AUXILIUM COLLEGE (AUTONOMOUS) VELLORE – 6.

LESSON PLAN

Programme	M.Sc Chemistry
Programme Code	P14
Semester	II
Course	Advanced Coordination Chemistry
Course Code	PCCHE19
Hours	3
Credits	4
Total Hours	45
Max Marks	100
Course Instructor/ Coordinator	Ms. T. Revathy

Week / Date	No of Hours	Units	Topics	Teaching Methodolog y & Student Centric Methods *	Learning Resources *	Method of Evaluation
Ι	3	Ι	Thermodynamic and kinetic stability-stepwise and overall stability constant- Relationship between both the constants	Chalk and board	 Concise Coordination Chemistry by R. Gopalan Coordination Chemistry by Ajay Kumar 	Concept Checking Questions(CCQ)
Π	3	Ι	Trend in K-value - Irving- Williams series - Factors affecting the stability of complexes	Chalk and board	 Concise Coordination Chemistry by R. Gopalan Coordination Chemistry by Ajay Kumar 	CCQ

III	3	I	Determination of stability constants by spectrophotometric, polarographic and potentiometric methods	Chalk and board, Demo video	 Concise Coordination Chemistry by R. Gopalan Coordination Chemistry by Ajay Kumar 	Written test
IV	3	Ι	Detection of complex formation, Optical rotatory dispersion and circular dichroism- application to complexes	Chalk and board	 Essentials of Coordination Chemistry by Vasishta bhatt Inorganic Chemistry by Purcell and Kotz 	CCQ
V	3	I	Macrocyclic Ligands: Thermodynamic and kinetic template effect- structure, stability and applications of porphyrins, corrins, Schiffbases, Crown ethers and crypts	Powerpoint, Seminar	 Coordination Chemistry of Macrocyclic Compounds by Gordon A Melson The chemistry of macrocyclic ligand complexes by Leonard F. Lindoy 	Discussion
VI	3	III	Types of absorption spectra – ligand spectra, counter - ion spectra, CT spectra, ligand field spectra –R-S coupling- Microstates – Hund's rule	Chalk and board	 Concise Coordination Chemistry by R. Gopalan Coordination Chemistry by Ajay Kumar 	Problem solving activity
VII	3	III	Term states for 'd' – ions- Selection Rules– Laporte's and spin selection rule, Splitting of terms in oh and td complexes	Chalk and board	 Concise Coordination Chemistry by R. Gopalan Coordination Chemistry by Ajay Kumar 	Problem solving activity
VIII	3	III	Correlation diagrams – Orgel diagrams and Tanabe-Sugano diagrams- Spectra of different d systems – Racah parameters-nephelauxetic	Chalk and board	 Concise Coordination Chemistry by R. Gopalan Coordination Chemistry by Ajay Kumar 	Problem solving activity
IX	3	III	Charge Transfer spectra- Classification-Ligand to Metal, Metal to Ligand, Intervalence and Intra Ligand Charge transfer	Chalk and board	 Concise Coordination Chemistry by R. Gopalan Coordination Chemistry by Ajay Kumar 	Written test

X	3	III	Magnetic characteristics of transition metal complexes - types- determination of magnetic susceptibility - Guoy and Faraday's method - magnetic criterion of bond type in complex and orbital contribution to magnetic moment.	Powerpoint, Demo video	 Physical Inorganic Chemistry- A Coordination Chemistry Approach by S. F. A. Kettle Concise Coordination Chemistry by R. Gopalan 	CCQ
XI	3	V	Trans effect – Trans effect series – theories and applications, cis effect	Chalk and board	 Concise Coordination Chemistry by R. Gopalan Coordination Chemistry by Ajay Kumar 	Assignmen t
XII	3	V	$\begin{array}{llllllllllllllllllllllllllllllllllll$	Chalk and board	 Inorganic Chemistry by Purcell and Kotz Concise Coordination Chemistry by R. Gopalan 	CCQ
XIII	3	V	Hydrolysis reactions –acid and base hydrolysis reactions of six- coordinated Co(III) ammine complexes – mechanisms – evidences	Chalk and board	 Inorganic Chemistry by Purcell and Kotz Advance Inorganic Chemistry by Gurdeep Raj 	Written Test
XIV	3	V	Replacement of coordinated water – mechanisms – evidences - rates of water replacement - orbital occupation effects.	Chalk and board	 Advance Inorganic Chemistry by Gurdeep Raj Inorganic Chemistry by Purcell and Kotz 	Written Test
XV	3	V	Synthesis of Pt and Co compounds- Metal complexes in medicinal chemistry, industrial processes and agriculture.	Seminar by students & Group discussion	 Inorganic Chemistry by Purcell and Kotz Descriptive inorganic, Coordination, and Solid- state chemistry by Glen E. Rodgers Concise Coordination Chemistry by R. Gopalan 	Group Discussion and assignment

AUXILIUM COLLEGE (AUTONOMOUS) VELLORE – 6.

LESSON PLAN

Programme	M.Sc Chemistry			
Programme Code	P14			
Semester	II			
Course	Solid State chemistry and Nuclear chemistry			
Course Code	PCCHN15			
Hours	3			
Credits	4			
Total Hours	45			
Max Marks	100			
Course Instructor/ Coordinator	Ms. T. Revathy			

Week / Date	No of Hours	Units	Topics	Teaching Methodolog y & Student Centric Methods *	Learning Resources *	Method of Evaluation
Ι	3	Ι	Structure of solids- Comparison of X-ray and Neutron diffraction- Structure of Cadmium iodide and Nickel arsenide	(Models), Chalk and	 Structural Inorganic Chemistry by A. F. Wells E-Resources (wwwchem.uwimona.ed u.jm) 	Concept Checking Questions(CCQ)

Π	3	Ι	Structure of Perovskite and spinels and inverse spinels, Formation of spinels	Visual aids (Models), Chalk and board	 Structural Inorganic Chemistry by A. F. Wells Understanding Solids by Richard Tilley E-Resources (wwwchem.uwimona.ed u.jm) 	Problem solving activity
III	3	I	Hall effect and its applications, Pyroelectricity, piezo electricity and ferro electricity	Chalk and board, Video clips	 Solid State Chemistry and its Applications by Anthony R. West Solid State Chemistry- An Introduction by Smart and Moore 	CCQ
IV	3	I	Magnetic properties of solids- Hysteresis loss and loops Types of magnetic behaviour- Dia, Para, Ferro, Anti Ferro, Ferri magnetism- Ferrites, Garnets.	Chalk and board	 Solid State Chemistry and its Applications by Anthony R. West Understanding solid state physics by Sharon Ann Holgate 	CCQ
V	3	II	Solid state electrolyte-β- alumina-application of solid state electrolytes.	Chalk and board	 Solid State Chemistry and its Applications by Anthony R. West Solid State Electrochemistry by Peter G Bruce 	CCQ
VI	3	II	Reactions in solid state and phase transition, Ferrites and its types.	Chalk and board	 Solid State Chemistry and its Applications by Anthony R. West Solid State Chemistry by D K Chakrabarty 	CCQ
VII	3	II	Garnets, Diffusion, Diffusion co-efficient, Diffusion mechanisms- Vacancy and interstitial diffusion.	Chalk and board	 Solid State Chemistry and its Applications by Anthony R. West Solid State Chemistry by D K Chakrabarty 	CCQ

VIII	3	III	Quark theory, The magnetic properties of the Nucleus-Bohr magneton, Nuclear magneton, the neutron magnetic moment and the structure of the nucleon.	Powerpoint & Chalk and board	• Essentials of Nuclear Chemistry by H.J.Arnikar	Problem solving activity
IX	3	III	The net magnetic moments of the nuclei -the spin I, the magnetic moment μ_I and Nordheim rules, Salient feature of the Liquid drop model with derivations	Chalk and board	• Essentials of Nuclear Chemistry by H.J.Arnikar	CCQ
X	3	III	Salient feature of the Fermi –Gas model and Collective model.	Chalk and board	 Essentials of Nuclear Chemistry by H.J.Arnikar 	CCQ
XI	3	III	Nuclear reaction cross- section, Q value, Threshold energy and compound nucleus theory	Chalk and board	• Essentials of Nuclear Chemistry by H.J.Arnikar	Assignmen t
XII	3	V	Detection and determination of activity by Cloud chamber, Bubble chamber	Video clips & Group discussion	 Solid State Physics by XXXX Modern Physics by XXXX E-Resources(Group Discussion and assignment
XIII	3	V	Construction and working of Geiger-Muller counter, Scintillation and Cherenkov counters	Video clips & Group discussion	 Solid State Physics by XXXX Nuclear Chemistry by Maheshwar Sharon and Madhuri Sharon E-Resources(Group Discussion and assignment
XIV	3	V	Particle accelerators, Linear accelerators types and application	Seminar by students & Group discussion	 Solid State Physics by XXXX Modern Physics by XXXX 	Group Discussion and assignment

XV	3	V	Synchrotron,	Seminar by students &	 Solid State Physics by XXXX Modern Physics by 	Group Discussion and
			Nuclear Reactor: Fast breeder reactors	Group discussion	XXXX	assignment

AUXILIUM COLLEGE (AUTONOMOUS) VELLORE – 6.

LESSON PLAN

Programme	B.Sc Chemistry
Programme Code	U17
Semester	IV
Course	GENERAL CHEMISTRY – IV
Course Code	UCCHE16
Hours	2
Credits	5
Total Hours	30
Max Marks	100
Course Instructor/ Coordinator	Ms. T. Revathy

Week / Date	No of Hours	Units	Topics	Teaching Methodolog y& Student Centric Methods *	Learning Resources *	Method of Evaluation
Ι	2	Ι	Nitrogen family - preparations, properties and uses of hydrazine.	Chalk and board	 Modern Inorganic Chemistry by R.D.Madan Textbook of Inorganic Chemistry by P.L Soni 	Concept Checking Questions(CCQ)
II	2	Ι	Preparations, properties and uses of sodium bismuthate (NaBiO ₃). Oxygen Family - comparative study of compounds- hydrides.	Chalk and board	 Modern Inorganic Chemistry by R.D.Madan Textbook of Inorganic Chemistry by P.L Soni 	CCQ

III	2	I	Oxygen Family - comparative study of compounds- halides- Hexafluorides, Tetrahalides, Dihalides, Dimeric monohalides.	Chalk and board	 Modern Inorganic Chemistry by R.D.Madan Textbook of Inorganic Chemistry by P.L Soni 	CCQ
IV	2	Ι	Oxygen Family - comparative study of compounds- Oxides- Monooxides, Dioxides, Trioxides and Heptoxides, oxyacids.	Chalk and board	 Modern Inorganic Chemistry by R.D.Madan Textbook of Inorganic Chemistry by P.L Soni 	CCQ
V	2	I	Halogens - Comparative study of elements and compounds of halogens- hydracids, oxyacids.	Chalk and board	 Modern Inorganic Chemistry by R.D.Madan Textbook of Inorganic Chemistry by P.L Soni 	CCQ
VI	2	I	Inter halogen compounds, Noble gases - Position in the periodic table.	Chalk and board	 Modern Inorganic Chemistry by R.D.Madan Textbook of Inorganic Chemistry by P.L Soni 	CCQ
VII	2	I	Clathrates and its applications, Hybridisation and geometry of XeF ₂ and XeF ₄ .	Chalk and board	 Modern Inorganic Chemistry by R.D.Madan Textbook of Inorganic Chemistry by P.L Soni 	Problem solving activity
VIII	2	I & II	Hybridisation and geometry of XeF ₆ and XeOF ₄ . Cycloalkanes-Baeyer strain theory and theory of strainless rings.	Chalk and board	 Modern Inorganic Chemistry by R.D.Madan Advanced Organic Chemistryby B.SBahl, and Arun Bahl 	Problem solving activity
IX	2	П	Preparation using Wurtz reaction, Dieckmann's ring closure and reduction of aromatic hydrocarbons,Substitution and ring opening reactions.	Chalk and board	 Advanced Organic Chemistryby B.SBahl, and Arun Bahl Modern Organic Chemistry by M.K Jain and S.C Sharma 	CCQ

X	2	II	Elimination reaction: Types, orientation of double bond- Hoffmann and Saytzeff's rules.	Chalk and board	 Advanced Organic Chemistryby B.SBahl, and Arun Bahl Modern Organic Chemistry by M.K Jain and S.C Sharma 	Assignmen t
XI	2	II	Mechanisms of E1 and E2 reactions and evidences.	Chalk and board	 Advanced Organic Chemistryby B.SBahl, and Arun Bahl Modern Organic Chemistry by M.K Jain and S.C Sharma 	CCQ
XII	2	II	Factors affecting elimination reaction.	Chalk and board	 Advanced Organic Chemistryby B.SBahl, and Arun Bahl Modern Organic Chemistry by M.K Jain and S.C Sharma 	CCQ
XIII	2	II	Elimination vs Substitution.	Chalk and board	 Advanced Organic Chemistryby B.SBahl, and Arun Bahl Modern Organic Chemistry by M.K Jain and S.C Sharma 	CCQ
XIV	2	П	Reactivities of methyl, ethyl, propyl, isopropyl, n- butyl, vinyl and benzyl halides.	Chalk and board	 Advanced Organic Chemistryby B.SBahl, and Arun Bahl A Textbook of Organic Chemistry by K.S Tewari and M.K Vishnoi 	CCQ
XV	2	Π	Cis and trans eliminations- mechanisms.	Chalk and board	 Advanced Organic Chemistryby B.SBahl, and Arun Bahl A Textbook of Organic Chemistry by K.S Tewari and M.K Vishnoi 	CCQ

Lesson Plan for the year 2019 – 2020 (ODD SEMESTER)

Week	Portions to be covered	Reference	Platform (LMS)
Week 1	UNIT – 1 : Calculation of Formula weight or Molecular weight and Mole concept. Relationship between Molar Mass, Mole and Avagadro Number	Chemistry 2e by Paul Flowers, Klaus Theopold, Richard Langley &William Robinson	Chalk & Board
Week 2	UNIT – 1 : Solutions- definition and properties, concentration terms, Molarity, Formality and Normality – definition, mathematical expression and Comparison.	 Chemistry 2e by Paul Flowers, Klaus Theopold, Richard Langley &William Robinson. Modern Analytical Chemistry by David Harvey 	Chalk & Board
Week 3	UNIT – 1 : Equivalent weight calculation – for an acid, base, oxidizing agent. Volumetric Analysis- principle. Definition of Titrant, Titrand and Indicator.	Chemistry 2e by Paul Flowers, Klaus Theopold, Richard Langley &William Robinson. Modern Analytical Chemistry by David Harvey	Chalk & Board
Week 4	UNIT – 1: Preparation of Solutions and Standardization of Commercial acids. Primary and Secondary standards – Characteristics with Examples.	Modern Analytical Chemistry by David Harvey	Chalk & Board
Week 5	UNIT – 1: Theory of Acid-base titrations. Theory of acid-base indicators.	Analytical Chemistry by Gary Christian	Chalk & Board
Week 6	UNIT – 1: Theory of Redox titrations. Theory of Redox indicators.	Analytical Chemistry by Gary Christian	Chalk & Board
Week 7	UNIT – 1: Theory of Complexometric titrations and	Analytical Chemistry by Gary Christian	Chalk & Board

UCCHD19-GENERAL CHEMISTRY- III

	their indicators.		
Week 8	UNIT – 1: Theory of Iodometry and Iodimetry titrations and their indicators.	Analytical Chemistry by Gary Christian	Chalk & Board
Week 9	UNIT – 1: Theory of Precipitation titrations and adsorption indicators.	Analytical Chemistry by Gary Christian	Chalk & Board
Week 10	UNIT – 1: Types of errors, minimizing the errors, accuracy and precision, significant figures.	Modern Analytical Chemistry by David Harvey	Chalk & Board
Week 11	UNIT – III: Acidity of Alkynes	Textbook of Organic Chemistry by Bahl & Arun Bahl	Chalk & Board
Week 12	UNIT – III: Formation of Acetylides. Addition Reactions with water, hydrogen halides, halogens	Textbook of Organic Chemistry by Bahl & Arun Bahl	Chalk & Board
Week 13	UNIT – III: , oxidation, ozonolysis and Hydroxylation with KMnO ₄	Textbook of Organic Chemistry by Bahl & Arun Bahl	Chalk & Board
Week 14	UNIT – III: Carboxylic acids - Ionisation of carboxylic acids- acidity constants-comparison of acid strengths of substituted haloacids.	Textbook of Organic Chemistry by Bahl & Arun Bahl	Chalk & Board
Week 15	UNIT – III: acid strengths of substituted benzoic acids- Conversion of acids to their derivatives.	Textbook of Organic Chemistry by Bahl & Arun Bahl	Chalk & Board

UGCHB519: NON MAJOR ELECTIVE: COSMETICS AND DYES

Week	Portions to be covered	Reference	Platform (LMS)
Week 1	UNIT – 1 : Cosmetics Definition and Classification.	Chemistry in Daily life by Kirpal Singh	Chalk & Board
Week 2	UNIT – 1 : Components of Cosmetics. Deodrants and Antiperspirants – definition and differences.	Chemistry in Daily life by Kirpal Singh	Chalk & Board
Week 3	UNIT – 1 : Aerosols, Perfumes	Chemistry in Daily	Chalk & Board

	and Fragrances with examples. Pros and Cons of synthetic cosmetics.	life by Kirpal Singh	
Week 4	UNIT – 2: Basic Concept of Cosmetic Safety.	Handbook of Cosmetic science and Technology by Marc Paye, Andre´ O. Barel, and Howard I. Maibach	Chalk & Board
Week 5	UNIT – 2: Safety test items and Evaluation methods.	Handbook of Cosmetic science and Technology by Marc Paye, Andre´ O. Barel, and Howard I. Maibach	Chalk & Board
Week 6	UNIT – 2: Testing on human – Patch test and Usage Test.	Handbook of Cosmetic science and Technology by Marc Paye, Andre´ O. Barel, and Howard I. Maibach	Chalk & Board
Week 7	UNIT – 3: Herbal cosmetics – fruits and vegetables as haircare and skin care (apple, apricot, banana, carrot, cucumber, honey, lemon, tomato).	Herbal Principles and Cosmetics by Roland Hardman	Chalk & Board
Week 8	UNIT – 3: Perfumes and fragrances, skin care herbs – olive oil, sesame oil, black pepper, amla. Aromatherapy – various oils used in aromatherapy and their significance.	Herbal Principles and Cosmetics by Roland Hardman	Chalk & Board
Week 9	UNIT – 3: Standardization of herbs – importance, methods employed for standardization of herbal extracts.	Herbal Principles and Cosmetics by Roland Hardman	Chalk & Board
Week 10	UNIT – 4: Dyes - definition of dyes, requirements of a good dye i.e. Colour, chromophore and auxochrome, solubility, linearity, coplanarity, fastness, substantivity, definition of fastness and its properties and mordants with examples.	Applied Chemistry by Jayashree Ghosh	Chalk & Board
Week 11	UNIT – 4: Natural and	Applied Chemistry	Chalk & Board

	Synthetic Dyes - natural dyes - definition and limitations of natural dyes. Examples and uses of natural dyes with respect to henna, turmeric, saffron, indigo, chlorophyll –names of the chief dyeing material/s in each natural dye.	by Jayashree Ghosh	
Week 12	UNIT – 4: Synthetic dyes - definition of synthetic dyes, primaries and intermediates.	Applied Chemistry by Jayashree Ghosh. The Chemistry of Synthetic Dyes and Pigments by Lubs HA and Roberts E.	Chalk & Board
Week 13	UNIT – 5: Textile uses of dyes - impact of the textile and leather dye Industry on the environment with special emphasis on water pollution.	Fundamental Concepts of Environmental Chemistry by Sodhi G S	Chalk & Board
Week 14	UNIT – 5: biomedical uses – Tablets, syrups and capsules, DNA markers and therapeutics. Dyes in food and cosmetics.	Colorants for Non- textile applications by Freeman H S. & Peters A T.	Chalk & Board
Week 15	UNIT – 5: Properties of dyes used in food and cosmetics, commonly used food colors and their limits. Dyes sensitized solar cells – A tool to overcome the future energy crisis.	Natural Food colorants by Hendry G A F and Houghton J D. Colorants for Non- textile applications by Freeman H S. & Peters A T.	Chalk & Board

PECHE15: ELECTIVE IIIA: ANALYTICAL CHEMISTRY

Week	Portions to be covered	Reference	Platform (LMS)
Week 1	UNIT – 1 : Thermal Analysis – Introduction and types. Thermo Gravimetric Analysis (TGA)- principle, instrumentation.	Analytical Chemistry by Usha Rani.	Chalk & Board
Week 2	UNIT – 1 : Thermogravimetric	Analytical	Chalk & Board

	curves of CaC ₂ O ₄ H ₂ O, MgCr ₂ O ₄ , Hg ₂ CrO ₄ , Ag ₂ CrO ₄ , AgNO ₃ and Cu(NO ₃) ₂ .	Chemistry by Usha Rani.	
Week 3	UNIT – 1: Factors affecting TGA, Applications of TGA. DTG – Principles, Comparison of DTG&TGA	Instrumental Methods of Chemical Analysis by A K Srivatasava	Chalk & Board
Week 4	UNIT – 1: Differential Thermal Analysis (DTA) - principle, instrumentation, simultaneous TGA and DTA curves and applications.	Instrumental Methods of Chemical Analysis by A K Srivatasava. Analytical Chemistry by Usha Rani.	Chalk & Board
Week 5	UNIT – 1: Differential Scanning Calorimetry (DSC) principle, instrumentation and applications.	Instrumental Methods of Chemical Analysis by A K Srivatasava. Analytical Chemistry by Usha Rani.	Chalk & Board
Week 6	UNIT – 1: Thermometric titrations - principle, instrumentation and applications.	Instrumental Methods of Chemical Analysis by A K Srivatasava. Analytical Chemistry by Usha Rani.	Chalk & Board
Week 7	UNIT – 2: Chromatographic Techniques - Gas Chromatography (GC) - definition, principle, types, instrumentation - carrier gas, sample injection system, column, thermal compartment	Analytical Chemistry by Gary Christian	Chalk & Board
Week 8	UNIT – 2: detectors - Thermal Conductivity Detector (TCD), Ionization Detector (ID), Recorder and applications.	Analytical Chemistry by Gary Christian	Chalk & Board
Week 9	UNIT – 2: HPLC instrumentation - solvent delivery system, sample injection system, column, solvent.	Analytical Chemistry by Gary Christian	Chalk & Board
Week 10	UNIT – 2: detectors – UV detector, bulk property and solute property detectors,	Analytical Chemistry by Gary Christian	Chalk & Board

	recorder and applications		
Week 11	UNIT – 2: Super Critical Fluid Chromatography (SCFC) - properties, instrumentation, comparison with other types of chromatography	Analytical Chemistry by Gary Christian	Chalk & Board
Week 12	UNIT – 2: super critical fluid extraction and applications	Analytical Chemistry by Gary Christian	Chalk & Board
Week 13	UNIT-5: Environmental Chemistry - Water quality standards - BOD, COD - Analysis of Waste Water and its treatment – salinity of water and its treatment – Reverse Osmosis	Instrumental Methods of Chemical Analysis by Kaur	Chalk & Board
Week 14	UNIT – 5: Ambient air quality standards - Photochemical smog and oxides of nitrogen. Toxic Chemicals in environment - Toxicity of Mercury, Lead, Chromium	Instrumental Methods of Chemical Analysis by Kaur	Chalk & Board
Week 15	UNIT – 5: Analytical methods in Environmental Toxins	Instrumental Methods of Chemical Analysis by Kaur	Chalk & Board

Lesson Plan for the year 2019 – 2020 (EVEN SEMESTER)

ENVIRONMENTAL STUDIES

Week	Portions to be covered	Reference	Platform (LMS)
Week 1	UNIT – 1 : Multidisciplinary nature of Environmental Studies, Scope and Importance	UGC Syllabus book	Chalk and Board
Week 2	UNIT – 1 : Natural resources: Overexploitation of Water, Land and Energy.	UGC Syllabus book	Chalk and Board
Week 3	UNIT – 1 : Natural Resources : Forest and Mineral	UGC Syllabus book	Chalk and Board

Week 4	UNIT – 2: Ecosystem: Types,	UGC Syllabus book	Chalk and Board
	Structure & Function.		
Week 5	UNIT – 2: Ecosystem- Forest &	UGC Syllabus book	Chalk and Board
	Grassland.		
Week 6	UNIT – 2: Desert & acquatic	UGC Syllabus book	Chalk and Board
	Ecosystem.		
Week 7	UNIT – 3: Biodiversity & its	UGC Syllabus book	Chalk and Board
	values.		
Week 8	UNIT – 3: India as a nation of	UGC Syllabus book	Chalk and Board
	MEGA biodiversity.		
Week 9	UNIT – 3 :Threats to	UGC Syllabus book	Chalk and Board
	Biodiversity & its conservation.		
Week 10	UNIT – 4: Types of	UGC Syllabus book	Chalk and Board
	Environmental Pollution.		
Week 11	UNIT – 4: Water, Air, Noise &	UGC Syllabus book	Chalk and Board
	Soil pollution – Causes, Effects.		
Week 12	UNIT – 4: Rain water	UGC Syllabus book	Chalk and Board
	Harvesting and Solid Waste		
	Management.		
Week 13	UNIT – 5: Human Population &	UGC Syllabus book	Chalk and Board
	Environmental Pollution act.		
Week 14	UNIT – 5: Climate Change,	UGC Syllabus book	Chalk and Board
	Afforestation and Sustainable		
	Development.		
Week 15	UNIT – 5: Environmental	UGC Syllabus book	Chalk and Board
	Protection Act.		

UGCHB619: NON MAJOR ELECTIVE: COSMETICS AND DYES

Week	Portions to be covered	Reference	Platform (LMS)
Week 1	UNIT – 1 : Cosmetics Definition and Classification.	Chemistry in Daily life by Kirpal Singh	Chalk & Board
Week 2	UNIT – 1 : Components of Cosmetics. Deodrants and Antiperspirants – definition and differences.	Chemistry in Daily life by Kirpal Singh	Chalk & Board
Week 3	UNIT – 1 : Aerosols, Perfumes and Fragrances with examples. Pros and Cons of synthetic cosmetics.	Chemistry in Daily life by Kirpal Singh	Chalk & Board
Week 4	UNIT – 2: Basic Concept of	Handbook of	Chalk & Board
	Cosmetic Safety.	Cosmetic science and	

		Technology by Marc Paye, Andre´O. Barel, and Howard I.	
Week 5	UNIT – 2: Safety test items and Evaluation methods.	Maibach Handbook of Cosmetic science and Technology by Marc Paye, Andre´ O. Barel, and Howard I. Maibach	Chalk & Board
Week 6	UNIT – 2: Testing on human – Patch test and Usage Test.	Handbook of Cosmetic science and Technology by Marc Paye, Andre´ O. Barel, and Howard I. Maibach	Chalk & Board
Week 7	UNIT – 3: Herbal cosmetics – fruits and vegetables as haircare and skin care (apple, apricot, banana, carrot, cucumber, honey, lemon, tomato).	Herbal Principles and Cosmetics by Roland Hardman	Chalk & Board
Week 8	UNIT – 3: Perfumes and fragrances, skin care herbs – olive oil, sesame oil, black pepper, amla. Aromatherapy – various oils used in aromatherapy and their significance.	Herbal Principles and Cosmetics by Roland Hardman	Chalk & Board
Week 9	UNIT – 3: Standardization of herbs – importance, methods employed for standardization of herbal extracts.	Herbal Principles and Cosmetics by Roland Hardman	Chalk & Board
Week 10	UNIT – 4: Dyes - definition of dyes, requirements of a good dye i.e. Colour, chromophore and auxochrome, solubility, linearity, coplanarity, fastness, substantivity, definition of fastness and its properties and mordants with examples.	Applied Chemistry by Jayashree Ghosh	Chalk & Board
Week 11	UNIT – 4: Natural and Synthetic Dyes - natural dyes - definition and limitations of natural dyes. Examples and uses of natural dyes with respect to henna, turmeric, saffron, indigo,	Applied Chemistry by Jayashree Ghosh	Chalk & Board

dyeing material/s in each natural		
dye.		
UNIT - 4: Synthetic dyes -	Applied Chemistry	Chalk & Board
definition of synthetic dyes,	by Jayashree Ghosh.	
primaries and intermediates.	The Chemistry of	
	Synthetic Dyes and	
	Pigments by Lubs HA	
	and Roberts E.	
UNIT - 5: Textile uses of dyes -	Fundamental	Chalk & Board
impact of the textile and leather	Concepts of	
dye Industry on the environment	Environmental	
with special emphasis on water	Chemistry by Sodhi	
pollution.	GS	
UNIT – 5: biomedical uses –	Colorants for Non-	Chalk & Board
Tablets, syrups and capsules,	textile applications	
DNA markers and therapeutics.	by Freeman H S. &	
Dyes in food and cosmetics.	Peters A T.	
UNIT – 5: Properties of dyes	Natural Food	Chalk & Board
used in food and cosmetics,	colorants by Hendry	
commonly used food colors and	G A F and Houghton J	
their limits. Dyes sensitized	D.	
solar cells – A tool to overcome	Colorants for Non-	
the future energy crisis.	textile applications	
	Peters A T.	
	 UNIT - 4: Synthetic dyes - definition of synthetic dyes, primaries and intermediates. UNIT - 5: Textile uses of dyes - impact of the textile and leather dye Industry on the environment with special emphasis on water pollution. UNIT - 5: biomedical uses - Tablets, syrups and capsules, DNA markers and therapeutics. Dyes in food and cosmetics. UNIT - 5: Properties of dyes used in food and cosmetics, commonly used food colors and their limits. Dyes sensitized solar cells - A tool to overcome 	dyeing material/s in each natural dye.Applied Chemistry by Jayashree Ghosh.UNIT - 4: Synthetic dyes, primaries and intermediates.Applied Chemistry by Jayashree Ghosh.primaries and intermediates.Synthetic Dyes and Pigments by Lubs HA and Roberts E.UNIT - 5: Textile uses of dyes- impact of the textile and leather dye Industry on the environment with special emphasis on water pollution.Fundamental Concepts of Environmental Chemistry by Sodhi G SUNIT - 5: biomedical uses - Tablets, syrups and capsules, DNA markers and therapeutics. Dyes in food and cosmetics, commonly used food colors and their limits. Dyes sensitized solar cells - A tool to overcome the future energy crisis.Natural Food colorants for Non- textile applications by Freeman H S. & by Freeman H S. &

PECHC19: ELECTIVE IIA: PHARMACEUTICAL CHEMISTRY

Week	Portions to be covered	Reference	Platform (LMS)
Week 1	UNIT – 1: Mechanism of drug action and metabolism of Drugs - Introduction, classification of drugs,	Pharmaceutical Chemistry by Jayashree Ghosh	Chalk & Board
Week 2	UNIT – 1: Mechanism of action, drug receptors, biological responses	Pharmaceutical Chemistry by Jayashree Ghosh	Chalk & Board
Week 3	UNIT – 1: The chemistry of drug receptor binding - covalent bond, hydrogen bond, Vanderwaals forces	Pharmaceutical Chemistry by Jayashree Ghosh	Chalk & Board
Week 4	UNIT – 1: Mechanism of Drug action	Pharmaceutical Chemistry by	Chalk & Board

		Jayashree Ghosh	
Week 5	UNIT – 1: Metabolism of	Pharmaceutical	Chalk & Board
	Drugs – Chemical Pathways	Chemistry by	
		Jayashree Ghosh	
Week 6	UNIT – 1: phase I and phase II	Pharmaceutical	Chalk & Board
	reactions, Biotransformation	Chemistry by	
		Jayashree Ghosh	
Week 7	UNIT – 2: Absorption of drugs -	Pharmaceutical	Chalk & Board
	Routs of administration, factors	Chemistry by	
	affecting absorption	Jayashree Ghosh	
Week 8	UNIT – 2: Digestion and	Pharmaceutical	Chalk & Board
	absorption of proteins and fats	Chemistry by	
		Jayashree Ghosh	
Week 9	UNIT – 2: Assay of drugs -	Pharmaceutical	Chalk & Board
	Chemical, biological,	Chemistry by	
	immunological assay	Jayashree Ghosh	
Week 10	UNIT – 2: Biological role of	Pharmaceutical	Chalk & Board
	some inorganic compounds -	Chemistry by	
	Sodium and their compounds,	Jayashree Ghosh	
	potassium and their compounds		
Week 11	UNIT – 2: Biological role of	Pharmaceutical	Chalk & Board
	some inorganic compounds -	Chemistry by	
	Calcium and their compounds, Iodine and their compounds	Jayashree Ghosh	
Week 12	UNIT – 2: Biological role of	Pharmaceutical	Chalk & Board
WEEK 12	some inorganic compounds -	Chemistry by	Chaik & Doard
	Copper and their compounds, zinc	Jayashree Ghosh	
	and their compounds	suyusinee onosii	
Week 13	UNIT – 4: Podophyllotoxins,	Pharmaceutical,	Chalk & Board
	mechanism of action,	applied and Natural	
	endochrine agents, taxol.	products Chemistry	
		by P S Kalsi &	
		Sangeeta Jagtap	
Week 14	UNIT – 5: Toxins and their	Pharmaceutical,	Chalk & Board
	medicinal value - Introduction	applied and Natural	
	and classification. Toxins from	products Chemistry	
	microbes to reptiles	by P S Kalsi &	
		Sangeeta Jagtap	
Week 15	UNIT – 5: Blood clotting,	Pharmaceutical,	Chalk & Board
	anticoagulants	applied and Natural	
		products Chemistry	
		by P S Kalsi &	
		Sangeeta Jagtap	

Week	Portions to be covered	Reference	Platform (LMS)
Week 1	UNIT – 2 : Optical Properties of Solids – Luminescence & Phosphors.	Essentials of Nuclear Chemistry by H J Arnikar.	Chalk & Board
Week 2	UNIT – 2 : Lasers – Ruby Laser & Neodynium Laser	Essentials of Nuclear Chemistry by H J Arnikar.	Chalk & Board
Week 3	UNIT – 4: Bethe Notations and Introduction to Nuclear Reactions & Types	Essentials of Nuclear Chemistry by H J Arnikar.	Chalk & Board
Week 4	UNIT – 4: Direct, Photonuclear & Thermonuclear reactions.	Essentials of Nuclear Chemistry by H J Arnikar.	Chalk & Board
Week 5	UNIT – 4: Modes of radioactive decay, Nuclear isomerism	Essentials of Nuclear Chemistry by H J Arnikar.	Chalk & Board
Week 6	UNIT – 4: Isomeric Transition, Internal conversion.	Essentials of Nuclear Chemistry by H J Arnikar.	Chalk & Board
Week 7	UNIT – 4: Stellar Energy, Nucleosynthesis of light and heavy elements.	Essentials of Nuclear Chemistry by H J Arnikar.	Chalk & Board
Week 8	UNIT – 4: Hydrogen burning, Carbon burning, e, x, r, p & x processes.	Essentials of Nuclear Chemistry by H J Arnikar.	Chalk & Board
Week 9	UNIT – 4: Separation of Isotopes, Boron Isotope	Essentials of Nuclear Chemistry by H J Arnikar.	Chalk & Board
Week 10	UNIT – 4: Isotope exchange and Laser irradiation.	Essentials of Nuclear Chemistry by H J Arnikar.	Chalk & Board
Week 11	UNIT – 4: Separation of Uranium isotopes	Essentials of Nuclear Chemistry by H J Arnikar.	Chalk & Board
Week 12	UNIT – 4: Ultracentrifugation and Laser irradiation.	Essentials of Nuclear Chemistry by H J Arnikar.	Chalk & Board
Week 13	UNIT-4: Analytical applications of radioisotopes as traces.	Essentials of Nuclear Chemistry	Chalk & Board

PCCHN19: SOLID STATE CHEMISTRY AND NUCLEAR CHEMISTRY

Week 14	UNIT – 4: Isotope dilution analysis, Neutron activation analysis.	by H J Arnikar. Essentials of Nuclear Chemistry by H J Arnikar.	Chalk & Board
Week 15	UNIT – 4: Age determination by tritium and carbon-14 content.	Essentials of Nuclear Chemistry by H J Arnikar.	Chalk & Board

Dr. Sr. Jayasanthi

Auxilium College (Autonomous), Gandhi Nagar, Vellore – 632 006. Lesson Plan for the year 2019 - 2020 Odd Semester UECHA 16 – Analytical Chemistry

Week	Portions to be covered	Reference
1	Unit 1: Principle of gravimetric analysis, characteristic of precipitating agents – choice of precipitants and condition for precipitation.	R. Gopalan, P.S. Subramanian, K. Rengarajan, Elements of Analytical Chemistry, Sultan Chand & Sand, Reprint 2017.
2	Unit 1: Specific and selective precipitants – DMG-cupferron, salicylaldehyde, ethylene diamine – use of sequestering agents.	R. Gopalan, P.S. Subramanian, K. Rengarajan, Elements of Analytical Chemistry, Sultan Chand & Sand, Reprint 2017.
3	Unit 1: Co-precipitation – post precipitation – differences – reduction of error precipitation from homogeneous solution – Calculation in gravimetric methods. Data analysis – Precision and accuracy, types of errors, standard deviation.	R. Gopalan, P.S. Subramanian, K. Rengarajan, Elements of Analytical Chemistry, Sultan Chand & Sand, Reprint 2017.
4	Unit 2: Paper and column chromatography: Principle, Experimental requirement and application	Skoog, Holler, Crouch, Instrumental analysis, Cengage Cleaning, Eleventh Reprint 2012
5	Unit 2: Thin Layer Chromatography: Principle, Experimental requirement and application	Skoog, Holler, Crouch, Instrumental analysis, Cengage Cleaning, Eleventh Reprint 2012
6	Unit 2: Ion Exchange Chromatography – Properties and types – Factors affecting ion exchange equilibria.	Skoog, Holler, Crouch, Instrumental analysis, Cengage Cleaning, Eleventh Reprint 2012
7	Unit 3: UV Visible Spectroscopy: Absorption laws – Calculations involving Beer-Lambert,s law.	Elementary Organic Spectroscopy, Y.R. Sharma, S. Chand and Company limited, Reprint 2012.
8	Unit 3: Instrumentation – Photocolorimeter and spectrophotometer – block diagram with description of components.	Elementary Organic Spectroscopy, Y.R. Sharma, S. Chand and Company limited, Reprint 2012.

9	Unit 3: Types of electronic transitions – chromophore and auxochromes – factors	R. Gopalan, P.S. Subramanian, K. Rengarajan, Elements of Analytical
	affecting absorption maximum and intensity	Chemistry, Sultan Chand & Sand, Reprint 2017.
10	Unit 4: Infrared Spectroscopy – Principle – types of stretching and bending vibrations.	Elementary Organic Spectroscopy, Y.R. Sharma, S. Chand and Company limited, Reprint 2012
11	Unit 4: Instrumentation – block diagram – source-monochromator-sample cell- sampling techniques – detector and recorders	R. Gopalan, P.S. Subramanian, K. Rengarajan, Elements of Analytical Chemistry, Sultan Chand & Sand, Reprint 2017.
12	Unit 4: Identification of simple organic molecules from characteristic absorption bands.	Elementary Organic Spectroscopy, Y.R. Sharma, S. Chand and Company limited, Reprint 2012
13	Unit 5: Nuclear Magnetic Resonance Spectroscopy – Principle – Instrumentation with its different components Chemical shift, factors affecting chemical shift - shielding mechanism.	Gurdeep R. Charwal, Sham K. Anand , Spectroscopy, Himalaya Publishing House, Fifth Revised and Enlarged Edition – 2001
14	Unit 5: NMR spectrum of simple organic compounds – alcohols, aldehydes and ketones.	Elementary Organic Spectroscopy, Y.R. Sharma, S. Chand and Company limited, Reprint 2012.
15	Unit 5: Mass Spectrometry – Principle – Instrumentation - Mass spectrum of simple organic compounds – alcohols, aldehydes and ketones.	Elementary Organic Spectroscopy, Y.R. Sharma, S. Chand and Company limited, Reprint 2012.

Auxilium College (Autonomous), Gandhi Nagar, Vellore – 632 006. Lesson Plan for the year 2019- 2020 Odd Semester PECHE 15 – Analytical Chemistry

Week	Portions to be covered	Reference
1	Unit 3: Atomic absorption spectrometry –	P.S. Subramanian, K. Rengarajan,
	principle - instrumentation with block diagram	Elements of Analytical Chemistry,
	-Interferences in AAS -Difference between	R. Gopalan, Sultan chand & Sons,
	atomic absorption and emission method,	Reprint 2017.
	advantages and disadvantages of AES,	
2	Unit 3: Difference between atomic absorption	P.S. Subramanian, K. Rengarajan,
	and emission method, advantages and	Elements of Analytical Chemistry,
	disadvantages of AES	R. Gopalan, Sultan chand & Sons,
		Reprint 2017.
3	Unit 3: Advantages of AAS over flame	P.S. Subramanian, K. Rengarajan,
	emission spectroscopy, disadvantage of AAS.	Elements of Analytical Chemistry,
		R. Gopalan, Sultan chand & Sons,
		Reprint 2017.
4	Unit 3: Applications of AAS: Some typical	Willard Merritt, Dean and Settle,
	analysis like determination of metal in	Instrumental Methods of Analysis,
	biological system, lead in petrol.	CBS Publishers and Distributors Pvt.
		Ltd, Seventh Edition.
5	Unit 3: Photo acoustic spectroscopy –	Willard Merritt, Dean and Settle,
	instrumentation with block diagram and	Instrumental Methods of Analysis,
	applications.	CBS Publishers and Distributors Pvt.
		Ltd, Seventh Edition.
6	Unit 4: Computers in Chemistry - introduction	C Programming – The ultimate
	to computers - hardware, software and	way to learn the fundamentals of
	programming languages.	C-Language by Harry H. Chaudary
7	Unit 4: C – Programming: variables, constant,	C Programming – The ultimate
	operators, input and output functions. Go To	way to learn the fundamentals of
	statement – functions, arrays.	C-Language by Harry H. Chaudary

8	Unit 4: Pointers. Calculation of pH &	C Programming – The ultimate
	Solubility Product	way to learn the fundamentals of
		C-Language by Harry H. Chaudary
9	Unit 4: Calculation of bond energy using	C Programming – The ultimate
	Born-Lande equation. Introduction to internet	way to learn the fundamentals of
	service provided in India.	C-Language by Harry H. Chaudary
10	Unit 4: Terms used in internet, www, http,	C Programming – The ultimate
	html, TCP/IP band width, dialup service.	way to learn the fundamentals of
	ISDN and Search Engines.	C-Language by Harry H. Chaudary
11	Unit 5: Toxic Chemicals in environment –	Natural products chemistry –
	Toxicity of Mercury.	Sources, separations and Structure
		by Raymond cropper George
		Nicola .
12	Unit 5: Toxic Chemicals in environment –	Natural products chemistry –
	Toxicity of Lead.	Sources, separations and Structure
		by Raymond cropper George
		Nicola .
13	Unit 5: Toxic Chemicals in environment –	Natural products chemistry –
	Toxicity of Chromium.	Sources, separations and Structure
		by Raymond cropper George
		Nicola.
14	Unit 5: Analytical methods in environmental	Natural products chemistry –
	toxins.	Sources, separations and Structure
		by Raymond cropper George
		Nicola.
15	Unit 5: Analytical methods in environmental	Natural products chemistry –
	toxins.	Sources, separations and Structure
		by Raymond cropper George
		Nicola.

Auxilium College (Autonomous), Gandhi Nagar, Vellore – 632 006. Lesson Plan for the year 2019 - 2020 Even Semester UECHF 16 – Pharmaceutical Chemistry

Week	Portions to be covered	Reference
1	Unit 1: Definition of the following terms - drug, nature and sources of drugs, pharmacy, pharmacodynamics, pharmacokinetics, pharmacology, molecular pharmacology, pharmacophore, toxicology. Bacteria, virus, difference between bacteria and virus, fungi, vaccine.	Pharmacetical Chemistry Jaya shree Ghoush
2	Unit 1: Causes, symptoms and drugs for anaemia, jaundice, cholera, malaria and filarial. Causes, symptoms and drugs for dengue fever, chikungunya, tyhoid. Diagnostic test for sugar, salt and cholesterol in blood and urine.	Applied Chemistry Jaya shree Ghoush
3	Unit 1: Indian medicinal plants - medicinal uses and chemical present in neem, keezhanelli, mango, adathoda, thoothuvalai, hibiscus, rose, tulsi, turmeric, curry leaves, ficus.	Pharmacetical Chemistry Jaya shree Ghoush
4	Unit 2: Sulphonamides – definition, synthesis and therapeutic uses of prontosil, sulphathiozole. Definition, synthesis and therapeutic uses of sulphafurazole and sulphapyridine.	Pharmacetical Chemistry Jaya shree Ghoush
5	Unit 2: SAR of prontosil. Antibiotics – definition, conditions, classifications. Properties, therapeutic uses and structure activity relationship.	Pharmacetical Chemistry Jaya shree Ghoush
6	Unit 2: Properties, therapeutic uses and structural activity relationship of chloramphenicol, tetracyclines. Antiseptics and disinfectants-definition and distinction, phenolic and chloro compounds.	Pharmacetical Chemistry Jaya shree Ghoush
7	Unit 3: Analgesics – definition, narcotic: natural, morphine and its derivatives, uses, SAR of morphine. Synthetic - pethidine, methodone, morphinan, benzomorphan – disadvantages and uses.	Pharmacetical Chemistry Lakshmi

8	Unit 3: Non-narcotic analgesics - salicylic acid	Pharmacetical Chemistry
	and its derivatives, para-aminophenol derivatives, pyrazole derivative, indolyl and aryl acetic acid derivatives, ibuprofen, ketoprofen -therapeutic uses and adverse effects. Anaesthetics –	Lakshmi
	definition, characteristics, classifications.	
9	 Unit 3: Volatile general anaesthetics - ether, vinyl ether, chloroform, halothane, trichloroethylene, ethylchloride, nitrous oxide, cyclopropane – uses and disadvantages. Non-volatile general anesthetics - thiopental sodium, methohexitone, propanidid. 	Pharmacetical Chemistry Jaya shree Ghoush
10	Unit 4: Cancer: definition, causes, treatment, drugs used (antineoplastics). AIDS - causes, symptoms, prevention, AZT, DDC.	Pharmacetical Chemistry Jaya shree Ghoush
11	Unit 4: Hypoglycemic drugs, diabetes - types - causes, control, insulin- preparation, uses. Oral hypoglycemic agents. Anticonvulsant agents - definition, types. Barbiturates, hydantoins, oxazolidenediones, succinimides.	Pharmacetical Chemistry Jaya shree Ghoush
12	Unit 4: Blood - grouping, composition, R _h factor. Blood pressure - hypertension and hypotension, treatment.	Pharmacetical Chemistry Jaya shree Ghoush
13	Unit 5: Cardiovascular drugs – definition, action, cardiac glycosides, anti-arrhythmic drugs-characteristics, classification, example - quinidine, propanol hydrochloride and uses.	Pharmacetical Chemistry Jaya shree Ghoush
14	Unit 5: Anti-hypertensive agents – aldomet, pentolinium tartrate, reserpine. Anti anginal agents – nitrites, dipyridamole.	Pharmacetical Chemistry Jaya shree Ghoush
15	Unit 5: Vasodilator, tolazoline hydrochloride, isoxsuprine hydrochloride, sodium nitroprusside, hydrallazine hydrochloride and papaverine. Organic Pharmaceutical aids: Preservatives, Colouring agent, Sweetening agent and flavouring agent.	Applied Chemistry Jaya shree Ghoush

Auxilium College (Autonomous), Gandhi Nagar, Vellore – 632 006. Lesson Plan for the year 2019 - 2020 Even Semester PECHC19 – Pharmaceutical Chemistry

Week	Portions to be covered	Reference
1	Unit 3 : Drug discovery-introduction. Discovery of Penicillin	Medicinal Chemistry by V K Ahuwalia & Madhu Chopra
2	Unit 3: Discovery of Lead compounds	Medicinal Chemistry by V K Ahuwalia & Madhu Chopra
3	Unit 3 : Lead modification – Modification of functional group. SAR	Medicinal Chemistry by V K Ahuwalia & Madhu Chopra
4	Unit 3 :QSAR – Hammett Equation, Taft equation, Hansch Analysis	Medicinal Chemistry by V K Ahuwalia & Madhu Chopra
5	Unit 3 : Craig Plot, Drug Design using QSAR	Medicinal Chemistry by V K Ahuwalia & Madhu Chopra
6	Unit 3 : Computer Aided Drug Design (CADD).	Medicinal Chemistry by V K Ahuwalia & Madhu Chopra
7	Unit 4 : Cancer Chemotherapy – Types of Neoplasm	Medicinal Chemistry by V K Ahuwalia & Madhu Chopra
8	Unit 4 : Causes of Cancer, Tumor Formation, Mechanism and metastasis.	Medicinal Chemistry by V K Ahuwalia & Madhu Chopra
9	Unit 4 : Determination of drug response; Cytotoxic anticancer drugs – Alkylating agents and its mode of action.	Medicinal Chemistry by V K Ahuwalia & Madhu Chopra
10	Unit 4 : Antimetabolites, antitumor antibiotics, pyrimidine antagonist.	Medicinal Chemistry by V K Ahuwalia & Madhu Chopra
11	Unit 4 : Treatment of Cancer – Radiation, Surgery and Chemotherapy.	Medicinal Chemistry by V K Ahuwalia & Madhu Chopra

12	Unit 5: Introduction of Nutraceutical	Medicinal Chemistry by
	chemistry	V K Ahuwalia & Madhu
		Chopra
13	Unit 5: Nutraceuticals: Plant, animal and	Medicinal Chemistry by
	Microbial sources.	V K Ahuwalia & Madhu
		Chopra
14	Unit 5 : Anticoagulants: Blood coagulation –	Medicinal Chemistry by
	Pathway – Prevention of coagulation.	V K Ahuwalia & Madhu
		Chopra
15	Unit 5: Direct and indirect acting	Medicinal Chemistry by
	anticoagulation – Anticoagulation	V K Ahuwalia & Madhu
	Theraphy.	Chopra

Lesson plan for the year 2019 – 2020

Odd Semester

PECHA19- POLYMER CHEMISTRY

Week	Unit	Portions to be covered	Reference
1	II	Characterization methods, crystalline nature, X-ray diffraction, degree of crystallinity	Polymer Science By V.R. Gowariker, Textbook of Polymer Science By Fred W. Billmeyer
2	II	Differential Scanning Calorimetric (DSC) and Thermo Gravimetric Analysis of polymers (TGA)	Polymer Science By V.R. Gowariker, Textbook of Polymer Science By Fred W. Billmeyer
3	II	affecting glass transition temperature,	Polymer Science By V.R. Gowariker, Textbook of Polymer Science By Fred W. Billmeyer
4	III	Hydrolysis, acidolysis and hydrogenation	Polymer Science By V.R. Gowariker, Textbook of Polymer Science By Fred W. Billmeyer
5	III	Cyclisation, cross-linking and vulcanization	Polymer Science By V.R. Gowariker, Textbook of Polymer Science By Fred W. Billmeyer
6	III	1	Polymer Science By V.R. Gowariker, Textbook of Polymer Science By Fred W. Billmeyer
7	III	Oxidative and photodegradation	Polymer Science By V.R. Gowariker, Textbook of Polymer Science By Fred W. Billmeyer

8	III	Mechanical properties of polymers, stress versus strain measurements	Polymer Science By V.R. Gowariker, Textbook of Polymer Science By Fred W. Billmeyer
9	IV	Polymer technology- moulding, extrusion, casting of films and calendaring	Polymer Science By V.R. Gowariker, Textbook of Polymer Science By Fred W. Billmeyer
10	IV	Molecular weights of polymers - viscometry, osmometry, light scattering	Polymer Science By V.R. Gowariker, Textbook of Polymer Science By Fred W. Billmeyer
11	IV	Gel Permeation Chromatography (GPC), ultracentrifugation, biodegradation	Polymer Science By V.R. Gowariker, Textbook of Polymer Science By Fred W. Billmeyer
12	V	Applications of polymers - industrially important polymers - natural and synthetic rubber,	Textbook of Polymer Science Ry Hred
13	V	polyester, polytetrafluoroethylene (Teflon) polystyrene, ion exchange resin	Polymer Science By V.R. Gowariker, Textbook of Polymer Science By Fred W. Billmeyer
14	V	polyacrylonitrile, carbon fibres, polyacrylates, polyvinyl chloride (PVC)	Polymer Science By V.R. Gowariker, Textbook of Polymer Science By Fred W. Billmeyer
15	V	Electrically conducting polymers - poly acetylene - poly aniline	Polymer Science By V.R. Gowariker, Textbook of Polymer Science By Fred W. Billmeyer

Lesson plan for the year 2019 - 2020

PCCHJ15 – SYNTHETIC ORGANIC CHEMISTRY

Week	Unit	Portions to be covered	Reference
1	III	Polymer supported reagents (synthesis of oligosaccharide)	Organic Reaction Mechanism By V. K. Ahluwalia
2	III		Organic Reaction Mechanism By V. K. Ahluwalia, Organic Organic Chemistry By Jagadamba, Singh
3	Ш	Alkylation of enamines, active methylene compounds	Reactions, Rearrangements and Reagents By S. N. Sanyal, Organic Reactions and their Mechanisms By P. S. Kalsi
4	Ш	Phosphorous, nitrogen and sulphur ylides	Organic Reactions and their Mechanisms By P. S. Kalsi, Advanced Organic Chemistry, Part B By Francis A. Carey and Richard J. Sundberg
5	Ш	Robinson annulations, DCC, trimethyl silyl iodide, 1,3-dithiane (Umpolung),	Organic Reactions and their Mechanisms By P. S. Kalsi, Advanced Organic Chemistry, Part B By Francis A. Carey and Richard J. Sundberg
6	III	Diisobutylaluminium hydride (DIBAL), BBN, trimethyl silyl chloride	Organic Reactions and their Mechanisms By P. S. Kalsi, Advanced Organic Chemistry, Part B By Francis A. Carey and Richard J. Sundberg
7	IV	Principles and synthetic process involving phase transfer catalysis - nitriles from alkyl halides, benzoyl cyanides from benzoyl chlorides	Techniques By V. K. Ahluwalia

[,
8	IV	Preparation of alkyl fluorides from alkyl halides, alcohols from alkyl halides using PTC	
9	IV	Preparation of azides from alkyl halides, sodium alkyl sulphonates from alkyl halides using PTC	
10	IV	Preparation of alkyl nitrates, thiocyanates, cyanates and p-toluenesulphonates from alkyl halides using PTC	
11	IV	Preparation of aryl ethers and thioethers, esterification using PTC	Organic Synthesis: Special Techniques By V. K. Ahluwalia
12	IV	Diazotransfer by phase transfer catalyst, dihalocarbenes	Organic Synthesis: Special Techniques By V. K. Ahluwalia
13	V	Transition metal catalyzed reactions - reaction and mechanism of Heck reaction and Suzuki cross coupling reaction	
14	v	Reaction and mechanism of carboxymethylation, hydro formylation	Organic Reactions and their Mechanisms By P. S. Kalsi, Advanced Organic Chemistry, Part B By Francis A. Carey and Richard J. Sundberg
15	V		Comprehensive Organic Synthesis By D.Gelman, Comprehensive Heterocyclic Chemistry III By Katritzky

Lesson plan for the year 2019 – 2020

USCHC519 - SMALL SCALE CHEMISTRY

Week	Unit	Portions to be covered	Reference
1	I	Objectives and characteristics of small-scale industries-Types of SSI-Role of SSI in Indian economy-problems of SSI	· · ·
2	I	Steps in starting SSI-Laws for SSI – Finance management-Quality control-definition and advantages	
3	Ι	Marketing and branding- Advertising- definition, objectives, advertising media.	Dr.V.Balu, Entrepreneurship and Small Business Promotion
4	II	Soaps – definition- main fatty and non- fatty raw materials -Types of soaps-manufacture of laundry soap and bathing soap- mechanism of cleansing action of soap	f
5	II	Composition, preparation and advantages of herbal soaps	B.N.Chakrabarty, Industrial Chemistry
6	II	Detergents-Classification of surfactive agents- manufacture of detergents. Shampoo-Composition and manufacture of egg and herbal shampoo	
7	III	Cosmetics –definition, kinds of cosmetics. Preparation of face powder, face cream and lipstick	A.N.Zamre, V.G.Ratolikar, A Textbook of Modern Applied Chemistry
8	III	Perfumes- definition, essential ingredients in perfumes	A.N.Zamre, V.G.Ratolikar, A Textbook of Modern Applied Chemistry
9	Ш	Classification of essential oils- preparation of perfumes	A.N.Zamre, V.G.Ratolikar, A Textbook of Modern Applied Chemistry
10	IV	Camphor – production, biosynthesis and applications. Bleaching powder - preparation, properties and uses.	•
11	IV	Biogas- composition, production and uses. Handmade paper from bagasse- composition of bagasse and uses.	· · · ·

12	IV	Asofoetida - composition, cultivation, B.K.Sharma, Industrial Chemistry manufactures and uses. Composition and manufacture of safety matches and agarbattis
13	V	Recycling of synthetic organic polymers –B.K.Sharma, Industrial Chemistry applications of PET, PVC, HDPE, and polystyrene
14	V	Reverse osmosis of water - production and B.K.Sharma, Industrial Chemistry applications. Coconut oil – manufacture by dry and wet processes and uses
15	V	Vulcanization of rubber, making an eraser. B.K.Sharma, Industrial Chemistry Pencils - forms of graphite, adhesion and lengthwise graphitization method and uses. Hands on Training for the manufacture of soaps, phenyl and Agarbattis

Lesson plan for the year 2019 – 2020

Even Semester

PCCHF19 - GROUP THEORY AND QUANTUM CHEMISTRY

Week	Unit	Portions to be covered	Reference
1	III	Black body radiation	Quantum Chemistry By R. K. Prasad
2		Distribution of energy in the black body radiation	Quantum Chemistry By R. K. Prasad
3		Photoelectric effect, Bohr's quantum theory and subsequent developments	Quantum Chemistry By R. K. Prasad
4	III	-	Fundamentals of Quantum Chemistry By R. Anantharaman

5	III	uantum mechanical postulates – operators, Hermitian property	Quantum Chemistry By R. K. Prasad
6	III	Particle in a box model (one and two dimensional cases)	Quantum Chemistry By D. A. Mcquarrie
7	III	Particle in a box model (three dimensional case)	Quantum Chemistry By D. A. Mcquarrie
8	III	Schrodinger equation for hydrogen atom and He atom, Origin of quantum numbers and their significance	-
9	IV	One dimensional harmonic oscillator	Quantum Chemistry By R. K. Prasad
10	IV	Normalization and the characteristics of the Eigen functions of a harmonic oscillator	Quantum Chemistry By D. A. Mcquarrie
11	IV	The recursion formula for the Hermite polynomials	Quantum Chemistry By D. A. Mcquarrie
12	IV	Selection rules of the harmonic oscillator	Quantum Chemistry By R. K. Prasad
13	IV	Space quantization of electronic orbitals	Quantum Chemistry By D. A. Mcquarrie
14	IV	The rigid rotor	Quantum Chemistry By D. A. Mcquarrie
15	IV	Particle in a ring, origin of quantum numbers and their significance	Quantum Chemistry By R. K. Prasad

Lesson plan for the year 2019 - 2020

PECHG15 – ORGANOMETALLIC AND BIOINORGANIC CHEMISTRY

Week	Unit	Portions to be covered	Reference
1	III	Addition reactions - 1,2 addition to double bonds	Inorganic Chemistry By J. Huheey and Organometallic chemistry of transition metals By Robert H. Crabtree
2	III	Carbonylation	Inorganic Chemistry By J. Huheey and Organometallic chemistry of transition metals By Robert H. Crabtree
3	III	Decarbonylation	Inorganic Chemistry By J. Huheey and Organometallic chemistry of transition metals By Robert H. Crabtree
4	III	Oxidative addition reactions	Inorganic Chemistry By J. Huheey and Organometallic chemistry of transition metals By Robert H. Crabtree
5	III	Reductive elimination reactions	Inorganic Chemistry By J. Huheey and Organometallic chemistry of transition metals By Robert H. Crabtree
6	III	Substitution reactions of octahedral complexes and their mechanisms	Selected Topics in Inorganic Chemistry By Wahid U. Malik, G. D. Tuli, R. D. Madan
7	III	Insertion reaction	Advanced Inorganic Chemistry By F. A. Cotton and G. Wilkinson and Organometallic chemistry of transition metals By Robert H. Crabtree
8	III	-	Advanced Inorganic Chemistry By F. A. Cotton and G. Wilkinson and Organometallic chemistry of transition metals By Robert H. Crabtree
9	III	Fluxional isomerism - definition, examples and mechanism	Inorganic Chemistry By M. C. Shriver, P. W. Atkins, C. H. Langford

10	IV	Hydrogenation of olefins (Wilkinson's Advanced Inorganic Chemistry By F. A. catalyst), modification of the original Cotton and G. Wilkinson, Inorganic catalyst Chemistry By J. Huheey
11	IV	HydroformylationofolefinsusingAdvancedInorganicChemistryByF. A.cobaltandrhodiumcatalyst(oxoCottonandG.Wilkinson,Inorganicprocess)ChemistryByJ.HuheeyChemistryByJ.Huheey
12	IV	Oxidation of olefins to aldehydes and Advanced Inorganic Chemistry By F. A. ketones (Wacker process) Cotton and G. Wilkinson, Inorganic Chemistry By J. Huheey
13	IV	Cyclo oligomerisation of acetylene Advanced Inorganic Chemistry By F. A. using Nickel catalyst (Reppe's catalyst) Cotton and G. Wilkinson, Inorganic Chemistry By J. Huheey
14	IV	Olefin isomerization and its mechanism Inorganic Chemistry By M. C. Shriver, P. W. Atkins, C. H. Langford
15	IV	Olefin metathesis and Polymer bound Inorganic Chemistry By M. C. Shriver, P. W. Atkins, C. H. Langford

Lesson plan for the year 2019 – 2020

UACHB19-ALLIED CHEMISTRY II

Week	Unit	Portions to be covered	Reference
1		Co-ordination chemistry – definition of the terms - ligands, chelate, chelation	Modern Inorganic Chemistry By R.D.Madan
2		Nomenclature of mononuclear complexes	Modern Inorganic Chemistry By R.D.Madan
3	Ι	Werner's theory	Modern Inorganic Chemistry By R.D.Madan

		1	
4	Ι	Pauling theory	Modern Inorganic Chemistry By R.D.Madan
5	Ι	Chemistry of EDTA	Modern Inorganic Chemistry By R.D.Madan
6	Ι	Chemistry of haemoglobin and chlorophyll	Modern Inorganic Chemistry By R.D.Madan
7	II	Stereochemistry	Modern Inorganic Chemistry By R.D.Madan
8	Π	Elements of symmetry	Modern Inorganic Chemistry By R.D.Madan
9	II		Advanced Organic Chemistry By B.S.Bahl and ArunBahl
10	II		Advanced Organic Chemistry By B.S.Bahl and ArunBahl
11	II	Geometrical isomerism of maleic and fumaric acids	Advanced Organic Chemistry By B.S.Bahl and ArunBahl
12	ΙΙ	Keto-enol tautomerism	Advanced Organic Chemistry By B.S.Bahl and ArunBahl
13	V	Medicinal chemistry - definition and one example each for analgesics, antipyretics, antibiotics	A Textbook of Pharmaceutical Chemistry By Jayashree Ghosh
14	V	Definition and one example each for antiseptics, tranquilizers, sedatives and hypnotics	A Textbook of Pharmaceutical Chemistry By Jayashree Ghosh
15	V	-	A Textbook of Pharmaceutical Chemistry By Jayashree Ghosh

Lesson plan for the year 2019 - 2020

USCHC519 - SMALL SCALE CHEMISTRY

Week	Unit	Portions to be covered	Reference
1	I	Objectives and characteristics of small-scale industries-Types of SSI-Role of SSI in Indian economy-problems of SSI	
2	Ι	Steps in starting SSI-Laws for SSI – Finance management-Quality control-definition and advantages	
3	Ι		Dr.V.Balu, Entrepreneurship and Small Business Promotion
4	II	Soaps – definition- main fatty and non- fatty raw materials -Types of soaps-manufacture of laundry soap and bathing soap- mechanism of cleansing action of soap	f
5	II	Composition, preparation and advantages of herbal soaps	B.N.Chakrabarty, Industrial Chemistry
6	Π	Detergents-Classification of surfactive agents- manufacture of detergents. Shampoo-Composition and manufacture of egg and herbal shampoo	
7	III	Cosmetics –definition, kinds of cosmetics. Preparation of face powder, face cream and lipstick	A.N.Zamre, V.G.Ratolikar, A Textbook of Modern Applied Chemistry
8	III	Perfumes- definition, essential ingredients in perfumes	A.N.Zamre, V.G.Ratolikar, A Textbook of Modern Applied Chemistry
9	III	classification of essential oils- preparation of perfumes	A.N.Zamre, V.G.Ratolikar, A Textbook of Modern Applied Chemistry

10	IV	Camphor – production, biosynthesis and B.K.Sharma, Industrial Chemistry applications. Bleaching powder - preparation, properties and uses.
11	IV	Biogas- composition, production and uses. B.K.Sharma, Industrial Chemistry Handmade paper from bagasse- composition of bagasse and uses.
12	IV	Asofoetida - composition, cultivation, B.K.Sharma, Industrial Chemistry manufactures and uses. Composition and manufacture of safety matches and agarbattis
13	V	Recycling of synthetic organic polymers –B.K.Sharma, Industrial Chemistry applications of PET, PVC, HDPE, and polystyrene
14	V	Reverse osmosis of water - production and B.K.Sharma, Industrial Chemistry applications. Coconut oil – manufacture by dry and wet processes and uses
15	V	Vulcanization of rubber, making an eraser. B.K.Sharma, Industrial Chemistry Pencils - forms of graphite, adhesion and lengthwise graphitization method and uses. Hands on Training for the manufacture of soaps, phenyl and Agarbattis